suites numériques

Table des matières

1	$\underline{\mathbf{Mot}}$	<u>s clés - l</u>	Notations - Formules 3
	1.1	Vocabu	laire
	1.2	Notatio	ons
	1.3	Formul	es
2	\mathbf{suit}		iques, généralités 6
	$\overline{2.1}$	activité	 s
	2.2	à reteni	ir
	2.3	exercice	es
	2.4	correcti	ion exercices
3	suite	es arithm	nétiques 11
	3.1	suites d	le termes
		3.1.1	activités
		3.1.2	corrigés activités
			à retenir
		3.1.4	exercices
		3.1.5	corrigés exercices
			Q.C.M. suites arithmétiques sans somme des termes
			corrigé Q.C.M. suites arithmétiques sans somme des termes
	3.2		des termes
			activité : somme des entiers
			à retenir
			exercices
			corrigés exercices
			Q.C.M. suites arithmétiques avec somme des termes
			corrigé Q.C.M. suites arithmétiques avec somme des termes
	3.3		ion suites arithmétiques
	0.0	o varaav.	20
4	suite	es géomé	triques 30
	$\overline{4.1}$		es termes
			activités
			corrigés activités 34
			à retenir
		21210	exercices
			corrigés exercices
	4.2		des termes
	7.2		activité : somme des premiers termes
			à retenir
			exercices
			corrigés exercices
			Q.C.M. suites géométriques avec somme des termes
		4.2.6	corrigé Q.C.M. suites géométriques avec somme des termes 46

5	études des variations de suites numériques 5.1 activités 5.1.1 activité 1 : sens de variation 5.2 à retenir 5.3 exercices 5.4 corrigés exercices	48 48 48 49 51 52
6	approche de la notion de limite à partir d'exemples 6.1 activités 6.1.1 activité 1 : approche de la notion de limite 6.2 à retenir 6.3 exercices 6.4 corrigés exercices	53 53 53 54 55 57
8	devoir maison 7.1 dm 1	58 58 59 60 61
9	travaux pratiques 9.1 tp 1	62 62 65 68 71 74 77 81
10	sujets de bac 10.1 bac 1 et 2	83 83 85
11	Activités interdisciplinaires 11.0.1 travail 1 : (prévisions avec courbes de tendance)	8 7 87

1 <u>Mots clés - Notations - Formules</u>

1.1 Vocabulaire

Il faut connaître la signification des mots ou expressions suivantes :

- 1. suite numérique
- 2. suite numérique de nature arithmétique
- 3. suite numérique de nature géométrique
- 4. les termes d'une suite numérique
- 5. le rang d'un terme d'une suite numérique
- 6. le nom d'un terme d'une suite numérique
- 7. le valeur d'un terme d'une suite numérique
- 8. formule de récurrence
- 9. formule explicite
- 10. la raison d'une suite arithmétique
- 11. la raison d'une suite géométrique

1.2 Notations

Il faut connaı̂tre la signification des notations mathématiques suivantes :

- **1.** *u v w*
- **2.** u_1 u_2 u_3
- 3. $u_n u_{n+1}$
- **4.** r
- **5.** q

1.3 Formules

Il faut connaître par coeur les formules suivantes :

- 1. la suite u est arithmétique $\iff u_{n+1} u_n = nombre \ constant = r$ pour tout rang n
- 2. la suite u est arithmétique $\iff \overline{(u_{n+1} = u_n + r)}$ pour tout rang n
- 3. u est arithmétique de premier terme u_0 et de raison $r \Longrightarrow \underbrace{u_n = u_0 + r \times n}_{n}$ pour tout rang
- 4. u est arithmétique de premier terme u_1 et de raison $r \Longrightarrow \underbrace{\left(u_n = u_1 + r \times (n-1)\right)}$ pour tout rang n
- 5. u est arithmétique \iff les points de la suite dans un repère sont alignés selon une droite
- 6. u est arithmétique

$$\Rightarrow$$
 Somme des termes = $\frac{premier\ terme\ +\ dernier\ terme}{2} \times nombre\ de\ termes$

- 7. la suite u est géométrique $\iff \overline{\left(\frac{u_{n+1}}{u_n} = nombre \ constant = q\right)}$ (et q > 0) pour tout rang n
- 8. la suite u est géométrique $\iff \overline{(u_{n+1} = u_n \times q)}$ (et q > 0) pour tout rang n
- 9. u est géométrique de premier terme u_0 et de raison $q>0 \Longrightarrow \overbrace{u_n=u_0\times q^n}$ pour tout rang n
- 10. u est géométrique de premier terme u_1 et de raison $q>0 \Longrightarrow \boxed{u_n=u_1\times q^{n-1}}$ pour tout rang n
- 11. u est géométrique \iff les points de la suite dans un repère sont placés selon une courbe exponentielle
- 12. u est géométrique

$$\Rightarrow$$
 Somme des termes = premier terme $\times \frac{1 - raison^{nombre\ de\ termes}}{1 - raison}$

2

2.1 activités

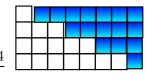
activité 1. suite définie par une formule explicite ou une formule de récurrence

des gradins sont constitués de poutres comme ceci ($voir\ dessin$) on considères la suite u des nombres de poutres par niveau en commençant par le haut qui sera appelé le rang 0, le nombre de poutres de rang $n \in \mathbb{N}$ est noté u_n

- 1. formule de récurrence
 - (a) donner les valeur de u_0, u_1, u_2, u_3
 - (b) comment passe t-on de u_n à u_{n+1} ? (donner une relation entre ces deux termes)
 - (c) en déduire les valeur de u_4 , u_5 , u_6
 - (d) utiliser la calculatrice pour obtenir les valeurs de u_{10} , u_{100} puis u_{200}
 - (e) utiliser la calculatrice pour trouver la plus petite valeur de n telle que $u_n \ge 500$
- 2. formule explicite
 - (a) trouver une formule qui donne directement u_n en fonction de n (commencer par u_1, u_2, u_3, u_4 puis généraliser à n)
 - (b) retrouver les valeurs de u_{10} , u_{100} puis u_{200}
 - (c) retrouver algébriquement la plus petite valeur de n telle que $u_n \ge 500$
- 3. pour aller un peu plus loin

soit $S_n = u_0 + u_1 + ... + u_n$ la somme des nombres de poutres qu'il faut au total du rang 0 au rang n

(a) donner les valeurs de S_0, S_1, S_2 et S_3



- (b) observer la figure et expliquer pourquoi $S_3 = \frac{(u_0 + u_3) \times 4}{2}$ puis vérifier que l'on retrouve bien S_3
- (c) calculer S_{10} par un raisonnement analogue
- (d) montrer que $S_n = (n+1)^2$
- (e) en déduire la hauteur maximale de gradin que l'on peut construire avec 1000 poutres au total et préciser le nombre de poutres qui restent

activité 2. suite définie uniquement par une formule de récurrence

soit la suite u définie par $\begin{cases} u_1 = 200 \\ u_{n+1} = 0,95u_n + 5 \end{cases}$

- 1. calculer u_1 , u_2 , u_3 , u_{10} , u_{100} et u_{200}
- 2. essayer de trouver la plus petite valeur de n telle que $u_n < 100$
- 3. un club à 200 membres inscrits le premier mois, chaque mois, 5% des membres partent, mais le responsable arrive toujours à obtenir 5 nouvelles inscriptions
 - (a) montrer que le nombre d'inscrit le n^e mois est u_n
 - (b) que semble devenir le nombre d'inscrits à long terme?

activité 3. suite définie uniquement par une formule explicite

soit la suite u définie par $v_n = 100 + 100 \times 0,95^{n-1}$

- 1. calculer $v_1, v_2, v_3, v_{10}, v_{100}$ et v_{200}
- 2. que semble t-il pour les suites v et u où u est la suite de l'exercice précédent?

2.2 à retenir

<u>définition 1</u> : (suite numérique réelle)

Une suite numérique réelle notée u est une liste ordonnée et infinie de nombres réels

exemples:

1	ordinal	1^{er}	2^e	3^e	4^e	5^e	6^e	7^e	8^e	•••
	rangs des termes	0	1	2	3	4	5	6	7	•••
1.	noms des termes	u_0	u_1	u_2	u_3	u_4	u_5	u_6	u_7	•••
-	termes de la suite u	10	11,5	13	$14,\!5$	16	17,5	19	20,5	•••

le premier terme, (terme de rang 0) est 10, le second terme (de rang 1) est 11,5 ...

2.	ordinal	1^{er}	2^e	3^e	4^e	5^e	6^e	•••
	rangs des termes	2000	2001	$\boldsymbol{2002}$	2003	2004	2005	•••
	noms des termes	v_{2000}	v_{2001}	v_{2002}	v_{2003}	v_{2004}	v_{2005}	•••
	termes de la suite u	516550	499228	419375	502671	498372	506608	•••

le premier terme, (terme de rang 2000) est 516550 ...

remarques:

- 1. en général on donne aux suites les noms u, v, w, ...
- 2. il y a toujours un premier terme, un second terme, ...
- 3. pour une suite u par exemple, le rang du premier terme peut être choisit arbitrairement en fonction du sujet d'étude (2000 pour l'an 2000 par exemple) une fois fixé le rang du premier terme (2000 par exemple) le nom du premier terme est nécessairement u_{2000} et le nom du suivant u_{2001} s'obtient en augmentant le rang de 1 ainsi de suite...
- 4. l'ensemble des termes de la suite u est aussi noté (u_n)
- 5. on peut aussi "voir" une suite u comme une fonction de $\mathbb N$ dans $\mathbb R$ qui à tout $n \geq k$ (où k est le rang du premier terme) associe un réel noté u(n) ou plus simplement u_n u_n serait l'image de n par la fonction u et on note : $\begin{cases} u: \mathbb N \longrightarrow \mathbb R \\ n \longmapsto u_n \end{cases}$

<u>définition 2</u> : (relation de récurrence)

Une suite numérique réelle u est définie par $\boxed{\text{récurrence}}$ signifie que

(1) on connaît la valeur du premier terme (2) on connaît une relation de récurrence qui permet de calculer le terme suivant à partir d'un terme quelconque

exemple:

pour la suite
$$u$$
 définie pour tout $n \in N$ par $\left\{ \begin{array}{l} u_0 = 100 & \textit{(1^{er} terme)} \\ u_{n+1} = 2u_n - 10 & \textit{(relation de récurrence)} \end{array} \right.$: $u_0 = 100 \quad u_1 = 2u_0 - 10 = 2 \times 100 - 10 = 190 \quad u_2 = 2u_1 - 10 = 2 \times 190 - 10 = 370$

pour calculer u_{100} il faut calculer tous les termes qui précèdent u_{100}

<u>définition 3</u> : (formule explicite)

Une suite numérique réelle u est définie explicitement signifie que l'on peut calculer un terme quelconque directement à partir de son rang $(de \ son \ indice)$ et d'une formule explicite

exemple:

pour la suite u définie pour tout $n \in N$ par $u_n = 2n - 10$:

$$u_0 = 2 \times 0 - 10 = -10$$
 $u_1 = 2 \times 1 - 10 = -8$ $u_{100} = 2 \times 100 - 10 = 190$

2.3 exercices

exercice 1:

- 1. soit la suite u définie par pour tout $n \in \mathbb{N}^*$ par la formule explicite qui donne u_n en fonction de $n: u_n = (2n-20)(60-3n)$
 - (a) calculer les 5 premiers termes de cette suite (à la main puis avec la calculatrice puis avec un tableur)
 - (b) déterminer u_{100}
 - (c) pour quelles valeurs de n cette suite est-elle positive? (justifier)
- 2. soit la suite u définie par pour tout $n \in \mathbb{N}$ par son premier terme et par la formule de récurrence qui donne le terme suivant à partir du terme précédent : $u_0 = 6$ et $u_{n+1} = (u_n 2)(6 u_n)$
 - (a) calculer les 5 premiers termes de cette suite et essayer de déterminer u_{100} (à la main puis avec la calculatrice puis avec un tableur)
 - (b) que se passe t-il si cette fois $u_0 = 5$?

$\mathbf{e}\mathbf{s}$

- 3 suites arithmétiques
- 3.1 suites de termes
- 3.1.1 activités

activité 0 : (suite logique)

- 1. déterminer au moins deux termes suivants de la suite logique et compléter la phrase
 - (a) -8; -5; -2; 1; 4; ...; ... pour passer d'un terme à l'autre, on ...
 - (b) 11; 7; 3; -1; ...; ... pour passer d'un terme à l'autre, on ajoute ...
 - (c) 2,7; 4,1; 5,5; ...; ... pour passer d'un terme à l'autre, on ...
- 2. on dit que ces suites sont de natures ... car, pour passer d'un terme à l'autre, on : ...
- 3. la suite suivante est-elle arithmétique? (justifier): 1; 3; 6; 10; 15; ...

activité 1 : (noms des termes, rangs des termes, ordinaux des termes et formule explicite pour calculer un terme quelconque)

- 1. soit une suite arithmétique notée « u » ou « (u_n) » de raison notée « r=5 » où le 1^{er} terme est noté u_0 avec $u_0=10$
 - (a) compléter ci dessous en détaillant les calculs :

$$...^{e} \text{ terme} = u_{1} = ...$$
 $...^{e} \text{ terme} = u_{2} = ...$
 $...^{e} \text{ terme} = u_{3} = ...$
 $...^{e} \text{ terme} = u_{100} = ...$
 $...^{e} \text{ terme} = u_{n} = ...$
 $10 \quad ... \quad ... \quad ...$
 $1er \quad ... \quad ... \quad ...$
 $1er \quad ... \quad ... \quad ...$
 $1er \quad ... \quad ... \quad ...$

(b) remarque:

si le premier terme s'appelle u_0 et la raison r alors on a la formule explicite pour calculer directement u_n en fonction de u_0 et r:

$$u_n = \dots$$

(c) soit u une suite arithmétique de 1^{er} terme $u_0 = 20$ et de raison r = -2

calculer le 1000^e terme et donner son nom : 1000^e terme = $u_{...} = ...$

- 2. soit une suite arithmétique notée « u » ou « (u_n) » de raison notée « r=5 » où le $(1^{er}$ terme est noté $u_1)$ avec $u_1=10$
 - (a) compléter ci dessous en détaillant les calculs :

(b) remarque:

si le premier terme s'appelle u_1 et la raison r alors on a la formule explicite pour calculer directement u_n en fonction de u_1 et r:

$$u_n = \dots$$

(c) soit u une suite arithmétique de 1^{er} terme $u_1=20$ et de raison r=-2 calculer le 1000^e terme et donner son nom : 1000^e terme = $u_{...}=...$

activité 0 bis : (suite logique) 1. déterminer au moins deux termes suivants de la suite logique et compléter la phrase pour passer d'un terme à l'autre, on ... (a) -8; -5; -2; 1; 4; ...; ... (b) 11; 7; 3; -1; ...; ... pour passer d'un terme à l'autre, on ajoute ... (c) 2,7; 4,1; 5,5; ...; ... pour passer d'un terme à l'autre, on ... 2. on dit que ces suites sont de nature ... car, pour passer d'un terme à l'autre, on : 3. la suite suivante est-elle arithmétique? : 1; 3; 6; 10; 15; ... activité 1 bis : (terme quelconque) 1. soit une suite arithmétique de premier terme 10 et de raison 5 (a) calculer le 2^e le 3^e et le 4^e terme 2^e terme = ... 3^e terme = ... $5^e \text{ terme} = \dots$ (b) calculer le 10^e terme : 10^e terme = ... (c) combien de fois ajouter 5 pour obtenir le 100^e terme? : ... (d) combien de fois ajouter 5 pour obtenir le n^e terme où n > 1 est un entier naturel? : ... (e) que remarque t-on? 2. soit une suite arithmétique de 1^{er} terme 20 et de raison -2calculer le 1000^e terme : 1000^e terme = ... activité 2 bis : (noms des termes) 1. soit une suite arithmétique notée « u » ou « (u_n) » et de raison notée « r=2 » où le 1^{er} terme est noté $u_0 = 10$ (a) comment est noté le 2^e ? le 3^e ? le 10^e terme? 2^e terme = ... 3^e terme = ... $10^e \text{ terme} = \dots$ (b) quel est le rang de u_n ? : ... (c) exprimer chacun des termes précédents en fonction de u_0 et r 2^e terme = ... 3^e terme = ... $10^e \text{ terme} = \dots$ (d) que remarque t-on?: 2. soit une suite arithmétique notée « u » ou « (u_n) » et de raison notée « r=2 » où le 1^{er} terme est noté $u_1 = 10$ (a) comment est noté le 2^e ? le 3^e ? le 10^e terme?

(b) quel est le rang de u_n ?

(d) que remarque t-on?

(c) exprimer chacun des termes précédents en fonction de u_1 et r

activité 4 : Comparaison de suites

Votre travail consiste à choisir entre deux locaux à louer en fonction des contrats fixés par les loueurs, ceci afin de minimiser le coût de location pour le locataire pour une durée maximale de deux ans.

Deux tarifs sont au choix:

Tarif 1 : 800 € le premier mois puis augmentation du loyer de 25€ par mois

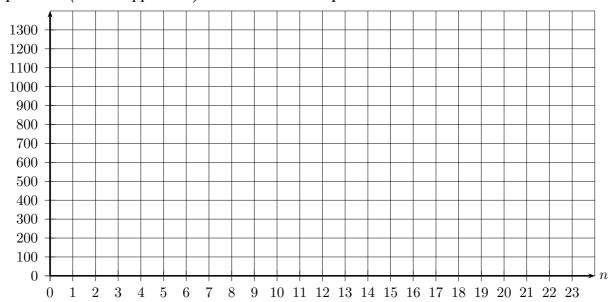
Tarif 2 : 1200 € le premier mois puis baisse du loyer de 25€ par mois

- 1. On pose $u_0 = 800$ et on considère la suite u des montants des loyers pour le tarif 1
 - (a) préciser et justifier la nature de la suite u, donner son premier terme et sa raison
 - (b) donner la formule de récurrence de u_{n+1} en fonction de u_n
 - (c) calculer u_1, u_2, u_3 et u_{10} et interpréter la valeur de u_{10}
 - (d) donner la formule explicite de u_n en fonction de n
 - (e) résoudre l'inéquation $u_n \ge 1200$ et interpréter le résultat
 - (f) calculer $S_{11} = u_0 + u_1 + ... + u_{11}$ et interpréter le résultat
- 2. On pose $v_0 = 1200$ et on considère la suite v des montants des loyers pour le tarif 2
 - (a) préciser et justifier la nature de la suite v, donner son premier terme et sa raison
 - (b) donner la formule de récurrence de v_{n+1} en fonction de v_n
 - (c) calculer v_1, v_2, v_3 et v_{10} et interpréter la valeur de v_{10}
 - (d) donner la formule explicite de v_n en fonction de n
 - (e) résoudre l'inéquation $v_n \leq 800$ et interpréter le résultat
 - (f) calculer $S'_{11} = v_0 + v_1 + ... + v_{11}$ et interpréter le résultat
- 3. pour quelle durée la mensualité est-elle la même pour les deux loyers?
- 4. quel tarif (1 ou 2) conseiller à une entreprise qui a besoin d'un local
 - (a) pour 6 mois?

(c) pour 18 mois?

(b) pour 12 mois?

- (d) pour 24 mois?
- 5. représenter graphiquement les deux suites dans le repère ci dessous et retrouver graphiquement (tracés apparents) les résultats des questions 1.e. 2.e. et 3 ci dessus



6. à partir de quelle durée, le tarif 2 devient-il plus avantageux que le 1? (méthode libre) (aide : exprimer $S_n = u_0 + ... + u_n$ et $S'_n = v_0 + ... + v_n$ en fonction de n et comparer S_n et S'_n)

3.1.2 corrigés activités

corrigé activité 4 : Comparaison de suites

- 1. On pose $u_0 = 800$ et on considère la suite u des montants des loyers pour le tarif 1
 - (a) la suite u est de nature arithmétique car pour passer d'un terme à l'autre on ajoute toujours le même nombre r=+25 appelé raison de la suite son premier terme est 800
 - (b) formule de récurrence de $(u_{n+1} = u_n + r)$ donc $(u_{n+1} = u_n + 25)$
 - (c) $u_1 = 800 + 25 = \boxed{825}$ $u_2 = 825 + 25 = \boxed{850} \ (par \ r\'ecurrence)$ ou $u_2 = 800 + 25 \times 2 = \boxed{850} \ (par \ calcul \ explicite)$ $u_3 = 850 + 25 = \boxed{875} \ (par \ r\'ecurrence)$ ou $u_3 = 800 + 25 \times 3 = \boxed{875} \ (par \ calcul \ explicite)$ $u_{10} = 800 + 25 \times 10 = \boxed{1025} \ (par \ calcul \ explicite)$ on qui signific que Dans 10 mais le lever du terif 1 sors de 875 \rightleftharpoons
 - ce qui signifie que Dans 10 mois le loyer du tarif 1 sera de 875 €
 - (d) formule explicite de u_n en fonction de n, $u_n = 800 + 25 \times n$ soit $(u_n = 25n + 800)$ (e) $u_n \ge 1200$ pour n?

$$25n + 800 \ge 1200$$

$$25n \ge 1200 - 800$$

$$n \ge \frac{400}{25}$$

$$(n \ge 16)$$

Dans 16 mois, le loyer sera d'au moins 1200 €

(f)
$$S_{11} = u_0 + u_1 + ... + u_{11} = \underbrace{\frac{1^{er}terme + dernier\ terme}{2} \times nombre\ de\ termes}_{=} = \frac{u_0 + u_{11}}{2} \times 12$$

$$\mathbf{avec} \begin{cases} u_0 = 800 \\ u_{11} = 800 + 25 \times 11 = 1075 \\ nombre\ de\ termes = 12 \end{cases}$$

$$\mathbf{soit}\ S_{11} = \frac{800 + 1075}{2} \times 12 = \underbrace{11250}$$

un total de 11250 € sont payés en loyers pour les 12 premiers mois

- 2. On pose $v_0 = 1200$ et on considère la suite v des montants des loyers pour le tarif 2
 - (a) la suite v est de nature arithmétique

car pour passer d'un terme à l'autre on ajoute toujours le même nombre

(r=+25) appelé raison de la suite

son premier terme est 1200

- (b) formule de récurrence de $(v_{n+1} = v_n + r)$ donc $(v_{n+1} = v_n 25)$
- (c) $v_1 = 1200 25 = \boxed{1175}$

 $v_2 = 1175 - 25 = \boxed{1150}$ (par récurrence)

ou

 $v_2 = 1200 - 25 \times 2 = \boxed{1150}$ (par calcul explicite)

 $v_3 = 1150 - 25 = \boxed{1125}$ (par récurrence)

ou

 $v_3 = 1200 - 25 \times 3 = \boxed{1125}$ (par calcul explicite)

 $v_{10} = 1200 - 25 \times 10 = \boxed{950}$ (par calcul explicite)

ce qui signifie que Dans 10 mois le loyer du tarif 2 sera de 950 €

- (d) formule explicite de v_n en fonction de n, $v_n = 1200 25 \times n$ soit $(v_n = -25n + 1200)$
- (e) $v_n \le 800 \text{ pour } n$?

$$-25n + 1200 \le 800$$

$$25n \le 800 - 1200$$

$$-25n \le -400$$

$$n \ge \frac{-400}{-25}$$

 $(n \ge 16)$

Dans 16 mois, le loyer sera de moins de 800 €

(f)
$$S'_{11} = v_0 + v_1 + ... + v_{11} = \underbrace{\left(\frac{1^{er}terme + dernier\ terme}{2} \times nombre\ de\ termes\right)}_{2} = \frac{v_0 + v_{11}}{2} \times 12$$

$$\mathbf{avec} \begin{cases} v_0 = 1200 \\ v_{11} = 1200 - 25 \times 11 = 925 \\ nombre\ de\ termes = 12 \end{cases}$$

soit
$$S_{11} = \frac{1200 + 925}{2} \times 12 = \boxed{12750}$$

un total de 12750 € sont payés en loyers pour les 12 premiers mois

3. pour quelle durée la mensualité est-elle la même pour les deux loyers ? : -25n + 1200 = 25n + 800

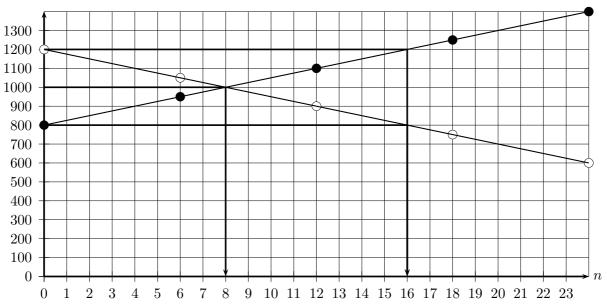
$$-25n - 25n = 800 - 1200$$

$$n = \frac{-400}{-50} = \boxed{8}$$
 donc après 8 mois, les mensualités sont égales

4. quel tarif (1 ou 2) conseiller à une entreprise qui a besoin d'un local

- (a) pour 6 mois : (tarif 1 car 5175 < 6825)
- (b) pour 12 mois : (tarif 1 car 11250 < 12750)
- (c) pour 18 mois? (tarif 2 car 18225 > 17775)
- (d) pour 24 mois? (tarif 2 car 26100 > 21900)

5. représenter graphiquement les deux suites dans le repère ci dessous et retrouver graphiquement (tracés apparents) les résultats des questions 1.e. 2.e. et 3 ci dessus



6. à partir de quelle durée, le tarif 2 devient-il plus avantageux que le 1? (méthode libre)

$$S_n = u_0 + \dots + u_n = \frac{800 + 800 + 25n}{2} \times (n+1) = \frac{1600 + 25n}{2} \times (n+1)$$
$$S'_n = v_0 + \dots + v_n = \frac{1200 + 1200 - 25n}{2} \times (n+1) = \frac{2400 - 25n}{2} \times (n+1)$$

On utilise le tableau de valeurs de la calculatrice

n	15	16	17
S_n	15800	17000	18225
S_n'	16200	17000	17775
comparaison de S_n et S'_n	$S_n < S'_n$	$S_n = S'_n$	$S_n > S'_n$

C'est donc (à partir d'une durée de 17 + 1 = 18 mois) de location que le tarif 2 devient plus avantageux que le tarif 1

<u>définition 4</u> : (suite arithmétique et formule de récurrence)

quelle que soit la suite u de nombres réels : u est une suite arithmétique de raison r et de premier terme u_0

 \iff quel que soit $n \in \mathbb{N} : (u_{n+1} - u_n = r) \iff \forall n \in \mathbb{N} :$ ormule de récurrence

remarque:

la différence entre deux termes consécutifs quelconques de la suite est constante et reste égale à un nombre noté r et appelé raison de la suite on dit aussi que "pour passer d'un terme à un autre, on ajoute toujours le même nombre" appelé raison de la suite

exemples:

- i. -7; -4; -1; 2; 5; 8; ... est une suite arithmétique de raison r=3 et de 1^{er} terme -7 car on passe d'un terme au suivant en ajoutant 3
- **ii.** 17, 5; 15, 8; 14, 1; 12, 4; ... est une suite arithmétique de raison r = -1,7 et de 1^{er} terme 15,8 car on passe d'un terme au suivant en ajoutant -1,7

propriété 1 : (suite arithmétique et formule explicite en fonction de n)

quelle que soit la suite notée u ou (u_n) de nombres réels :

u est arithmétique de $\underline{1^{er}}$ terme noté $\overline{u_0}$ et de raison notée rsi $u_n = 1^{er} terme + raison \times (\acute{e}cart entre \ 0 \ \overline{et} \ n)$ alors $(u_n = u_0 + nr)$ $\overline{u_n \text{ est le } (n+1)^e}$ terme où le terme après n variations

u est arithmétique de $\underline{1^{er}}$ terme noté $\overline{u_1}$ et de raison notée r \mathbf{si} $u_n = 1^{er} terme + raison \times (\acute{e}cart entre \ 1 \ et \ n)$ alors $u_n = u_1 + (n-1)r$ u_n est le n^e terme où le terme après n-1 variations

remarques:

- i. l'écart entre deux nombre a et b avec $a \le b$ est b-a
- ii. si u est arithmétique de 1^{er} terme noté u_k et de raison notée ralors $u_n = 1^{er} terme + raison \times (\acute{e}cart\ entre\ k\ et\ n)$ avec $(n \ge k)$ soit $(u_n = u_k + (n-k)r)$

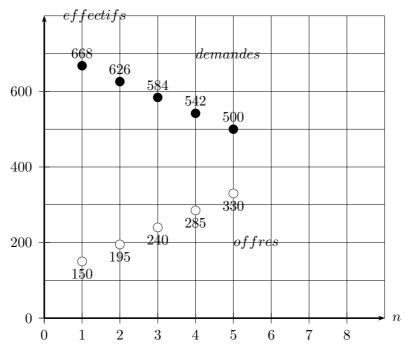
exemples:

- i. soit une suite arithmétique de 1^{er} terme $u_1 = 10$ et de raison 1,5le n^e terme en fonction de n est $u_n = u_1 + (n-1)r = 10 + 1, 5(n-1)$ par exemple $u_{100} = u_1 + (100 - 1) \times 1, 5 = 10 + 99 \times 1, 5 = 158, 5$
- ii. soit une suite arithmétique de 1^{er} terme $u_0 = 10$ et de raison 1,5 le $(n+1)^e$ terme en fonction de n est $u_n = u_0 + nr = 10 + 1, 5n$ par exemple $u_{100} = u_0 + (100 - 0) \times 1, 5 = 10 + 100 \times 1, 5 = 160$

3.1.4 exercices

exercice 2:

voici un graphique « corrigé » d'évolution des demandes et des places disponibles pour une certaine filière de BEP dans un département. (la 1ère année est l'année 2001)



soient d_n et p_n les nombres respectifs de demandes et de places l'année 2000 + n où n est un nombre entier

- 1. les nombres de places et de demandes constituent des suites de quelles natures? (justifier), donner le premier terme et la raison
- 2. calculer d_6 et p_6 puis d_7 et p_7
- 3. donner les "formules de récurrence" d_{n+1} en fonction de d_n ainsi que p_{n+1} en fonction de p_n
- 4. calculer d_{10} et p_{10}
- 5. donner les "formules explicites" de d_n et p_n en fonction de n
- 6. déterminer par calcul l'année à partir de laquelle la demande devrait atteindre 0
- 7. déterminer par calcul l'année à partir de laquelle l'offre devrait atteindre 800
- 8. résoudre l'inéquation : $d_n < p_n$ et en déduire l'année où la demande sera satisfaite (vérifier graphiquement)

exercice 3:

en 2006, une personne place un capital $C_0=1000$ euros à t=3% d'intérêts simples annuels cette personne ne touche plus à son compte par la suite

(« intérêts simples » signifie que : chaque année, les intérêts sont de t% du capital initial)

- 1. calculer les intérêts « I » annuels en euros
- 2. soit C_n le montant du compte l'année 2006 + n
 - (a) calculer C_1, C_2, C_3 et C_{10}
 - (b) exprimer C_{n+1} en fonction de C_n et préciser la nature le 1er terme et la raison de la suite (C_n)
 - (c) exprimer C_n en fonction de n
 - (d) déterminer l'année à partir de laquelle le capital aura doublé
 - (e) calculer le capital à placer pour avoir 2000 euros après 10 ans avec t = 3%
 - (f) calculer le taux t pour avoir 2000 euros en 10 ans avec un capital initial de 1000 euros.

exercice 4:

un bateau remorqueur est en train de ramener un iceberg de 1000 tonnes du pôle sud et cet iceberg fond en perdant 0,65 tonnes par heure en moyenne on note u_n la masse de l'iceberg dans n heures (n est un nombre entier)

- 1. préciser la nature de la suite numérique (u_n) , son premier terme u_0 et sa raison
- 2. déterminer la masse de l'iceberg après 10h puis 3 jours puis une semaine. $(u_{...} = ...)$
- 3. exprimer la masse de l'iceberg dans n heures en fonction de n $(u_n = ...)$
- 4. dans combien de temps la masse de l'iceberg passera t-elle sous les 600 tonnes? (conclusion en jours et heures à 1 heure prés)

exercice 5:

à un péage autoroutier, un caissier a déjà enregistré le passage de 300 véhicules et a remarqué qu'il enregistrait 6 véhicules par minute en moyenne on note v_n le nombre moyen de véhicules enregistrés par le caissier dans n minutes

- 1. préciser la nature de la suite numérique (v_n) , son premier terme v_0 et sa raison
- 2. déterminer le nombre de véhicules enregistrés par le caissier dans 3 heures. $(v_{...} = ...)$
- 3. exprimer le nombre de véhicules enregistrés dans n minutes en fonction de n $(v_n = ...)$
- 4. dans combien de temps le nombre de véhicules enregistrés dépassera t-il 2000 ? (conclusion en heures et minutes à 1 minute près)

exercice 6:

la population d'une ville a cette année un effectif de 10000 habitants, et il est prévu un accroissement annuel absolu de la population de 1500 habitants par an

- 1. déterminer selon ces prévisions l'effectif de la population de la ville dans 1 an, dans 10 ans.
- 2. exprimer l'effectif de la population dans n années, noté P_n
- 3. déterminer le nombre d'années pour que la population dépasse 30000 habitants.
- 4. que devrait être l'accroissement annuel de la population pour que l'effectif de 30000 soit atteint dans 16 années.
- 5. une autre ville (Ville B) avec un accroissement absolu annuel de 1500 atteindra les 30000 habitants dans 10 années, quel est alors l'effectif de la ville B aujourd'hui?

exercice 7:

Monsieur X vient d'obtenir un prêt en s'engageant à en rembourser 70 euros ce mois puis 75 euros le mois prochain, puis 80 euros le mois suivant et ainsi de suite. on note u_n la somme remboursée dans n mois (n entier)

- 1. Préciser la nature de la suite (u_n) ainsi que son premier terme u_0 et sa raison
- 2. déterminer la mensualité remboursée dans 2 ans. $(u_{...} = ...)$
- 3. exprimer la mensualité remboursée dans n mois en fonction de $n(u_n = ...)$
- 4. déterminer le nombre de mois à attendre pour que la mensualité dépasse les 120 euros
- 5. déterminer la somme totale remboursée en un an.

3.1.6 Q.C.M. suites arithmétiques sans somme des termes

Il n'y a q'une seule bonne réponse pour chaque question, trouvez la et justifiez par un calcul

Questions		Réponses
1. Quelle suite est arithmétique?		□ 2 4 8 16 32
		\square 640 320 160 80 40
		\square 2,1 5,2 8,3 11,5
		□ 20,9 18,7 16,5 14,3
	Que vaut le 10^e terme de la suite	□ 150
2.	arithmétique?	□ 50
	100 105 110 115	□ 145
		□ 45
	La suite u est arithmétique,	□ 300
3.	$u_0 = 100 \text{ et } r = 10$ que vaut u_{20} ?	□ 290
	que vaut u_{20} .	□ 310
	La suite u est arithmétique,	□ 100
4.	$u_1 = 200 \text{ et } r = -5$ que vaut u_{20} ?	□ 105
	que vuus ω_{20} .	□ 95
	La suite u est arithmétique,	$\square \ u_n = 10n + 5$
5.	$u_0 = 10$ et $r = 5$ que vaut u_n en fonction de n ?	$\square \ u_n = 5n + 10$
	que vaut u_n en fonction de n :	$\square \ u_n = 10 \times 5^n$
		$\square \ u_n = 5 \times 10^n$
	La suite u est arithmétique,	$\square \ u_n = -5n + 15$
6.	$u_1 = 10$ et $r = -5$ que vaut u_n en fonction de n ?	$\square \ u_n = -5n + 10$
	que vaut u_n en fonction de n .	$\square \ u_n = -10n - 5$
		$\square \ u_n = 10n - 5$
	La suite u est arithmétique, $u_0 = 30$ et $r = 3$	\square $n \ge 156$
7.	à partir de quelle valeur de n	\square $n \ge 157$
	a t-on $u_n > 500$?	\square $n > 157$
	La suite u est arithmétique,	\square $n \ge 50$
8.	$u_0 = 500$ et $r = -8$ à partir de quelle valeur de n	\square $n \leq 50$
	a t-on $u_n < 100$?	\square $n \ge 51$
	La suite u est arithmétique,	$\square \ u_{n+1} = u_n + 3$
9.	de premier terme 3 et de raison 4 quelle est la formule de récurrence	$\square \ u_{n+1} = 3n + 4$
	de u_{n+1} en fonction de u_n ?	$\square \ u_{n+1} = u_n + 4$
		$\square \ u_{n+1} = 4n + 3$
10.		$\square \ u_{n+1} = u_n + 4$
_	uelle suite u est arithmétique,	$\square \ u_{n+1} = u_n - 4$
u e	e premier terme -4 et de raison 5?	$\square \ u_{n+1} = u_n + 5$
		$\square u_{n+1} = u_n - 5$

3.1.7 corrigé Q.C.M. suites arithmétiques sans somme des termes

3.2 somme des termes

3.2.1 activité : somme des entiers

- 1. soit u, une suite arithmétique de 1^{er} terme 1 et de raison 1 les 10 premiers termes sont alors : 1; 2; 3; 4; 5; 6; 7; 8; 9; 10 on cherche la valeur de la somme des 10 premiers termes, soit : S=1+2+3+4+5+6+7+8+9+10 mais aussi S=10+9+8+7+6+5+4+3+2+1
 - (a) en additionnant membre à membre les égalités précédentes, écrire 2S à l'aide d'un produit
 - (b) en déduire la valeur de S
 - (c) procéder de même pour déterminer la somme des 100 premiers nombres entiers non nuls
- 2. soit u, une suite de 1^{er} terme 10 et de raison 5
 - (a) écrire la somme des 6 premiers termes
 - (b) déterminer cette somme en utilisant la méthode précédente
 - (c) déterminer de même la somme des 100 premiers termes de cette suite.
- 3. comment faire pour trouver la somme des premiers termes d'ne suite arithmétique?

3.2.2 à retenir

propriété 2 : (formule de la somme)

quelle que soit la suite notée u ou (u_n) de nombres réels :

si
$$u$$
 est arithmétique de 1^{er} terme noté u_0

alors $S = u_0 + u_1 + ... + u_n = \underbrace{\left(\frac{u_0 + u_n}{2} \times (n+1)\right)}_{\text{2}} = \underbrace{\left(\frac{premier + dernier}{2} \times (nombre \ de \ termes)\right)}_{\text{2}} \times (nombre \ de \ termes)$
 S est la somme des $n+1$ premiers termes

si u est arithmétique de 1^{er} terme noté $\lceil \overline{u_1} \rceil$

alors
$$S = u_1 + ... + u_n = \underbrace{\left(\frac{u_1 + u_n}{2} \times n\right)}_{2} = \underbrace{\left(\frac{premier + dernier}{2} \times (nombre\ de\ termes)\right)}_{2}$$
 S est la somme des n premiers termes

remarques:

i. pour la somme S des n-k+1 termes consécutifs de la suite arithmétique $S=u_k+u_{k+1}+\ldots+u_n$ avec n>k, on a aussi :

$$S = \frac{premier + dernier}{2} \times (nombre\ de\ termes) = \frac{u_k + u_n}{2} \times (n - k + 1)$$

exemples:

i. soit une suite arithmétique de 1^{er} terme $u_1 = 10$ et de raison 1, 5 $S = u_1 + u_2 + ... + u_{20} = ?$

$$\begin{cases} u_1 = 10 \\ u_{20} = 10 + 1, 5 \times 19 = 38, 5 \end{cases} \quad \mathbf{donc} \ S = \frac{u_1 + u_{20}}{2} \times 20 = \frac{10 + 38, 5}{2} \times 20 = 485 \end{cases}$$

ii. soit une suite arithmétique de 1^{er} terme $u_0=10$ et de raison 1,5

$$S = u_0 + u_1 + \dots + u_{20} = ?$$

$$\left\{ \begin{array}{l} u_0 = 10 \\ u_{20} = 10+1, 5\times 20 = 40 \end{array} \right. \ \, \mathbf{donc} \, \, S = \frac{u_0 + u_{20}}{2} \times 21 = \frac{10+40}{2} \times 21 = 525 \right.$$

iii. soit une suite arithmétique de 1^{er} terme $u_0 = 10$ et de raison 1,5

$$S = u_{10} + u_{11} + \dots + u_{20} = ?$$

$$\begin{cases} u_{10} = 10 + 1, 5 \times 10 = 25 \\ u_{20} = 10 + 1, 5 \times 20 = 40 \end{cases} \quad \mathbf{donc} \ S = \frac{u_{10} + u_{20}}{2} \times (20 - 10 + 1) = \frac{25 + 40}{2} \times 11 = 357, 5 \end{cases}$$

3.2.3 exercices

exercice 8:

calculer astucieusement la somme suivante en justifiant votre méthode

- 1. S = 2 + 22 + 42 + 62 + 82 + 102 + 122 + 142 + 162 + 182
- **2.** S = 1600 + 1550 + 1500 + 1450 + 1400 + 1350 + 1300 + 1250 + 1200 + 1150 + 1100

exercice 9:

on laisse tomber une pierre dans le vide :

elle parcourt 5 mètres la première seconde, 15 mètres la 2^e seconde, 25 mètres la 3^e , ... soit une augmentation de la distance parcourue chaque seconde de 10 mètres par rapport à la distance précédente (en fait sur terre c'est 9,81m/s)

Soit d_n la distance parcourue la $n^{i\grave{e}me}$ seconde

- 1. donner les valeurs de : d_1 , d_2 , d_3 et d_{10} et dire ce que représente d_{10}
- 2. exprimez d_n en fonction de n
- 3. calculer la distance totale $S_{10}=d_1+d_2+\ldots+d_{10}$ parcourue pendant 10 secondes
- 4. calculer la distance S_{20} totale parcourue pendant les 20 premières secondes.
- 5. montrer que la distance totale parcourue pour n secondes est $S_n = 5n^2$
- 6. cette pierre met 4 secondes pour atteindre le fond d'un puits, quelle est la profondeur de ce puits?

exercice 10:

un sportif fait 2 tours de piste aujourd'hui puis 5 tours demain puis 8 tours après demain et ainsi de suite ...

soit u_n le nombre de tours de piste effectué dans n jours (le $n^{i \`{e} m e}$ inclus) .

- 1. donner les valeurs de : u_0 , u_1 , u_2 et u_{29}
- 2. calculer le nombre de tours $S_{29} = u_0 + u_1 + \ldots + u_{29}$ parcourus pendant les 30 premiers jours.

exercice 11:

une personne décide d'arrêter de fumer

Ce mois ci elle a dépensé 430 euros en tabac, chaque mois, elle diminue sa dépense en tabac de 7 euros.

Soit v_n la dépense en tabac le $n^{i\grave{e}me}$ jour avec $v_1=430$

- 1. donner les valeurs de v_2 et v_3 .
- 2. calculer la somme totale dépensée pour les 5 prochaines années (60 mois)

3.2.4	corrigés	exercices

3.2.5 Q.C.M. suites arithmétiques avec somme des termes

Il n'y a q'une seule bonne réponse pour chaque question, trouvez la et justifiez par un calcul

Questions		Réponses		
1. Quelle suite est arithmétique?		□ 2 4 8 16 32		
		$\square \ 2,1 \ 5,2 \ 8,3 \ 11,4 \ \dots$		
		\square 20,9 18,7 16,5 14,2		
	La suite u est arithmétique,	□ 252		
2.	$u_0 = 100 \text{ et } r = 8$ que vaut u_{20} ?	□ 260		
		□ 268		
_	La suite u est arithmétique,	□ 352		
3.	$u_1 = 100 \text{ et } r = 8$ que vaut u_{20} ?	□ 260		
		□ 268		
	Que vaut le 20^e terme de la suite	□ 395		
4.	arithmétique? 200 205 210 215	□ 300		
		□ 305		
_	La suite u est arithmétique,	$\square \ u_n = 10n + 5$		
5.	$u_0 = 5$ et $r = 10$ que vaut u_n en fonction de n ?	$\square \ u_n = 5n + 10$		
		$\square \ u_n = 10 \times 5^n$		
0	La suite u est arithmétique,	$\square \ u_n = 10n + 5$		
6.	$u_1 = 5$ et $r = 10$ que vaut u_n en fonction de n ?	$\square \ u_n = 5n + 10$		
		$\square \ u_n = 10n - 5$		
	La suite u est arithmétique,	$\square \ n \ge 316$		
7.	$u_0 = 50$ et $r = 3$ à partir de quelle valeur de n	\square $n \ge 317$		
	a t-on $u_n > 1000$?	$\square \ n > 317$		
	La suite u est arithmétique,	$\square \ n \ge 160$		
8.	$u_0 = 1000$ et $r = -5$ à partir de quelle valeur de n	$\square \ n \le 160$		
	a t-on $u_n < 200$?	$\square \ n \ge 161$		
	La suite u est arithmétique,	$\square \ u_{n+1} = u_n + 3$		
9.	de premier terme 4 et de raison 3 quelle est la formule de récurrence	$\square \ u_{n+1} = 3n + 4$		
	de u_{n+1} en fonction de u_n ?	$\square \ u_{n+1} = u_n + 4$		
	La suite u est arithmétique,	□ 205		
10.	$u_1 = 5$ et $r = 20$ que vaut $S = u_1 + + u_{10}$?	□ 910		
	1	□ 950		
	La suite u est arithmétique,	□ 100		
11.	$u_0 = 5$ et $r = 10$ que vaut $S = u_0 + u_1 + + u_{100}$?	□ 50757,5		
	1-2 .222 × 20 + 21 + + 2100 ·	□ 51005		

3.2.6 corrigé Q.C.M. suites arithmétiques avec somme des termes

3.3	évaluation suites arithmétiques

4 suites géométriques

- 4.1 suite des termes
- 4.1.1 activités

activité 0 : (suite logique)

1. déterminer au moins deux termes suivants de la suite logique et compléter la phrase

(a) 0,5; 1; 2; 4; ...; ... pour passer d'un terme à l'autre, on ...

(b) 128; 64; 32; 16; ...; ... pour passer d'un terme à l'autre, on ...

(c) 2; 1,8; 1,62; ...; ... pour passer d'un terme à l'autre, on ...

2. on dit que ces suites sont de natures ... car, pour passer d'un terme à l'autre, on : ...

3. la suite suivante est-elle géométrique? (justifier): 1; 2; 6; 12; 36; ...

activité 2 : (noms des termes, rangs des termes, ordinaux des termes et formule explicite pour calculer un terme quelconque)

1. soit une suite géométrique notée « u » ou « (u_n) » de raison notée « q=3 » où le 1^{er} terme est noté u_0 avec $u_0=10$

(a) compléter ci dessous en détaillant les calculs :

$$...^e \text{ terme} = u_1 = ...$$
 $...^e \text{ terme} = u_2 = ...$
 $...^e \text{ terme} = u_3 = ...$
 $...^e \text{ terme} = u_{100} = ...$
 $...^e \text{ terme} = u_n = ...$
 u_0

(b) remarque:

si le premier terme s'appelle u_0 et la raison q alors on a la formule explicite pour calculer directement u_n en fonction de u_0 et q:

$$u_n = \dots$$

(c) soit u une suite géométrique de 1^{er} terme $u_0=20$ et de raison q=1,5

calculer le 20^e terme et donner son nom : 20^e terme = $u_{...} = ...$

2. soit une suite arithmétique notée « u » ou « (u_n) » de raison notée « q=0,8 » où le $(1^{er}$ terme est noté $u_1)$ avec $u_1=1000$

(a) compléter ci dessous en détaillant les calculs :

(b) remarque:

si le premier terme s'appelle u_1 et la raison r alors on a la formule explicite pour calculer directement u_n en fonction de u_1 et q:

$$u_n = \dots$$

(c) soit u une suite géométrique de 1^{er} terme $u_1=20000$ et de raison q=0,7

calculer le 30^e terme et donner son nom : 30^e terme = $u_{...} = ...$

activité 0 bis : (suite logique) 1. déterminer au moins deux termes suivants de la suite logique et compléter la phrase (a) 0,5; 1; 2; 4; ...; ... pour passer d'une terme à l'autre, on ... **(b)** 128; 64; 32; 16; ...; ... pour passer d'une terme à l'autre, on multiplie ... (c) 2; 1,8; ; 1,62; 1,458 pour passer d'une terme à l'autre, on ... 2. on dit que ces suites sont de nature ... car, pour passer d'une terme à l'autre, on : 3. la suite suivante est-elle géométrique? : 1; 2; 6; 12; 36; ... activité 1 bis : (terme quelconque) 1. soit une suite géométrique de premier terme 5 et de raison 10 (a) calculer le 2^e le 3^e et le 4^e terme 2^e terme = ... 3^e terme = ... $5^e \text{ terme} = \dots$ (b) calculer le 10^e terme : 10^e terme = ... (c) combien de fois multiplier par 10 pour obtenir le 100^e terme? : ... (d) combien de fois multiplier par 10 pour obtenir le n^e terme où n>1 est un entier naturel?: (e) que remarque t-on? 2. soit une suite géométrique de 1^{er} terme 1000 et de raison 0,2 calculer le 20^e terme : 20^e terme = ... activité 2 bis : (noms des termes) 1. soit une suite géométrique notée « u » ou « (u_n) » et de raison notée « q=1,1 » où le 1^{er} terme est noté $u_0 = 100$ (a) comment est noté le 2^e ? le 3^e ? le 10^e terme? 2^e terme = ... 3^e terme = ... $10^e \text{ terme} = \dots$ (b) quel est le rang de u_n ? : ... (c) exprimer chacun des termes précédents en fonction de u_0 et q 2^e terme = ... 3^e terme = ... $10^e \text{ terme} = \dots$ (d) que remarque t-on?: 2. soit une suite géométrique notée « u » ou « (u_n) » et de raison notée « q=1,1 » où le 1^{er} terme est noté $u_1 = 10$ (a) comment est noté le 2^e ? le 3^e ? le 10^e terme? (b) quel est le rang de u_n ? (c) exprimer chacun des termes précédents en fonction de u_1 et q(d) que remarque t-on?

Votre travail consiste à choisir entre deux locaux à louer en fonction des contrats fixés par les loueurs, ceci afin de minimiser le coût de location pour le locataire pour une durée maximale de deux ans.

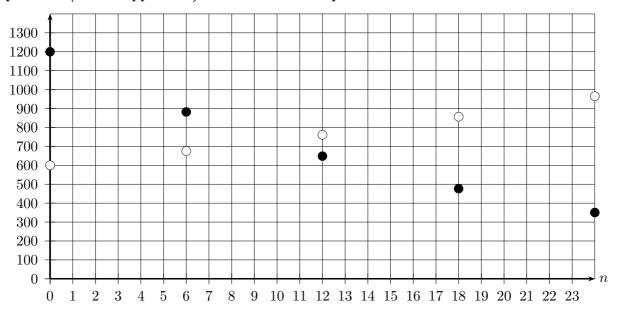
Deux tarifs sont au choix:

Tarif 1:600 € le premier mois puis augmentation du loyer de 2% par mois

Tarif 2 : 1200 € le premier mois puis baisse du loyer de 5% par mois

- 1. On pose $u_0 = 600$ et on considère la suite u des montants des loyers pour le tarif 1
 - (a) préciser et justifier la nature de la suite u, donner son premier terme et sa raison
 - (b) donner la formule de récurrence de u_{n+1} en fonction de u_n
 - (c) calculer u_1 , u_2 , u_3 et u_{10} et interpréter la valeur de u_{10}
 - (d) donner la formule explicite de u_n en fonction de n
 - (e) résoudre l'inéquation $u_n \ge 800$ et interpréter le résultat
 - (f) calculer $S_{11} = u_0 + u_1 + ... + u_{11}$ et interpréter le résultat
- 2. On pose $v_0 = 1200$ et on considère la suite v des montants des loyers pour le tarif 2
 - (a) préciser et justifier la nature de la suite v, donner son premier terme et sa raison
 - (b) donner la formule de récurrence de v_{n+1} en fonction de v_n
 - (c) calculer v_1, v_2, v_3 et v_{10} et interpréter la valeur de v_{10}
 - (d) donner la formule explicite de v_n en fonction de n
 - (e) résoudre l'inéquation $v_n \leq 600$ et interpréter le résultat
 - (f) calculer $S'_{11} = v_0 + v_1 + ... + v_{11}$ et interpréter le résultat
- 3. pour quelle durée la mensualité est-elle la même pour les deux loyers?
- 4. quel tarif (1 ou 2) conseiller à une entreprise qui a besoin d'un local
 - (a) pour 12 mois?

- (b) pour 24 mois?
- 5. représenter graphiquement les deux suites dans le repère ci dessous et retrouver graphiquement (tracés apparents) les résultats des questions 1.e. 2.e. et 3 ci dessus



6. à partir de quelle durée, le tarif 2 devient-il plus avantageux que le 1? (méthode libre) (aide : exprimer $S_n = u_0 + ... + u_n$ et $S'_n = v_0 + ... + v_n$ en fonction de n et comparer S_n et S'_n)

4.1.2 corrigés activités

corrigé activité 4 : Comparaison de suites

- 1. On pose $u_0 = 600$ et on considère la suite u des montants des loyers pour le tarif 1
 - (a) la suite u est de nature géométrique

car [pour passer d'un terme à l'autre on multiplie toujours le même nombre]

$$\boxed{q = CM = 1 + \frac{2}{100} = 1,02}$$
 appelé raison de la suite son $\boxed{\text{premier terme est } u_0 = 600}$

- (b) formule de récurrence de $(\overline{u_{n+1} = u_n \times q})$ donc $(\overline{u_{n+1} = u_n \times 1,02})$
- (c) $u_1 = 600 \times 1,02 = \boxed{612}$

$$u_2 = 612 \times 1,02 = \boxed{624,24}$$
 (par récurrence)

ou

$$u_2=600 imes 1,02^2=\overline{\left(624,24
ight)}$$
 (par calcul explicite)

$$u_3 = 624, 24 \times 1, 02 = (636, 7248)$$
 (par récurrence)

ou

$$u_3 = 600 \times 1,02^3 = (636,7248)$$
 (par calcul explicite)

$$u_{10} = 600 \times 1,02^{10} \simeq (731,4)$$
 (par calcul explicite)

ce qui signifie que Dans 10 mois le loyer du tarif 1 sera d'environs 731,4 €

- (d) formule explicite de u_n en fonction de n, $u_n = 600 \times 1,02^n$
- (e) $u_n \ge 800 \text{ pour } n$?

$$n \times ln(1,02) \ge ln(\frac{800}{600})$$

$$600 \times 1,02^n \ge 800$$
$$1,02^n \ge \frac{800}{600}$$

$$n \ge \frac{\ln(\frac{800}{600})}{\ln(1,02)}$$

$$ln(1,02^n) \ge ln(\frac{800}{600})$$

$$(n \ge 14, 53)$$

Dans environs 14,5 mois, le loyer sera d'au moins 800 €

(f)
$$S_{11} = u_0 + u_1 + ... + u_{11} = \underbrace{1^{er} terme \times \frac{1 - raison^{nb} \ termes}{1 - raison}}_{\text{1} = a_0 + a_1 + ... + a_{11} = \underbrace{1^{er} terme \times \frac{1 - raison^{nb} \ termes}{1 - raison}}_{\text{2} = a_0 + a_1 + ... + a_{11} = \underbrace{1^{er} terme \times \frac{1 - raison^{nb} \ termes}{1 - raison}}_{\text{3} = a_0 + a_1 + ... + a_{11} = \underbrace{1^{er} terme \times \frac{1 - raison^{nb} \ termes}{1 - raison}}_{\text{3} = a_0 + a_1 + ... + a_{11} = \underbrace{1^{er} terme \times \frac{1 - raison^{nb} \ termes}{1 - raison}}_{\text{3} = a_0 + a_1 + ... + a_{11} = \underbrace{1^{er} terme \times \frac{1 - raison^{nb} \ termes}{1 - raison}}_{\text{3} = a_0 + a_1 + ... + a_{11} = \underbrace{1^{er} terme \times \frac{1 - raison^{nb} \ termes}{1 - raison}}_{\text{3} = a_0 + a_1 + ... + a_{11} = \underbrace{1^{er} terme \times \frac{1 - raison^{nb} \ termes}{1 - raison}}_{\text{3} = a_0 + a_1 + ... + a_{11} = \underbrace{1^{er} terme \times \frac{1 - raison^{nb} \ termes}{1 - raison}}_{\text{3} = a_0 + a_1 + ... + a_{11} = \underbrace{1^{er} terme \times \frac{1 - raison^{nb} \ termes}{1 - raison}}_{\text{3} = a_0 + a_1 + ... + a_{11} = \underbrace{1^{er} terme \times \frac{1 - raison^{nb} \ termes}_{\text{3} = a_0 + a_1 + ... + a_{11} = \underbrace{1^{er} terme \times \frac{1 - raison^{nb} \ termes}_{\text{3} = a_0 + a_1 + ... + a_{11} = \underbrace{1^{er} terme \times \frac{1 - raison^{nb} \ termes}_{\text{3} = a_0 + a_1 + ... + a_{11} = \underbrace{1^{er} terme \times \frac{1 - raison^{nb} \ termes}_{\text{3} = a_0 + a_1 + ... + a_{11} = \underbrace{1^{er} terme \times \frac{1 - raison^{nb} \ termes}_{\text{3} = a_0 + a_1 + ... + a_{11} = \underbrace{1^{er} terme \times \frac{1 - raison^{nb} \ termes}_{\text{3} = a_0 + a_1 + ... + a_{11} = \underbrace{1^{er} terme \times \frac{1 - raison^{nb} \ termes}_{\text{3} = a_0 + a_1 + ... + a_{11} = \underbrace{1^{er} terme \times \frac{1 - raison^{nb} \ termes}_{\text{3} = a_0 + a_1 + ... + a_{11} = \underbrace{1^{er} terme \times \frac{1 - raison^{nb} \ termes}_{\text{3} = a_0 + a_1 + ... + a_{11} = \underbrace{1^{er} termes}_{\text{3} = a_0 + a_1 + ... + a_1 = \underbrace{1^{er} termes}_{\text{3} = a_0 + a_1 + ... + a_1 = a_0 + a_1 + ... + a_1 = \underbrace{1^{er} termes}_{\text{3} = a_0 + a_1 + ... + a_1 = a_0 + a_1 = \underbrace{1^{er} termes}_{\text{3} = a_0 + a_1 + ... + a_1 = a_0 + a_1 = a_$$

un total de 8047,25 € sont payés en loyers pour les 12 premiers mois

- 2. On pose $v_0=1200$ et on considère la suite u des montants des loyers pour le tarif 1
 - (a) la suite v est de nature géométrique

car pour passer d'un terme à l'autre on multiplie toujours le même nombre

$$\boxed{q = CM = 1 - \frac{5}{100} = 0.95}$$
 appelé raison de la suite son premier terme est $v_0 = 1200$

- (b) formule de récurrence de $(v_{n+1} = v_n \times q)$ donc $(v_{n+1} = v_n \times 0, 95)$
- (c) $v_1 = 1200 \times 0,95 = \boxed{1140}$

$$v_2 = 612 \times 0,95 = \boxed{1083}$$
 (par récurrence)

ou

$$v_2 = 1200 \times 0.95^2 = \boxed{1083}$$
 (par calcul explicite)

$$v_3 = 1083 \times 0,95 = (1028,85)$$
 (par récurrence)

ou

$$v_3 = 1200 \times 0,95^3 = (\overline{1028,85})$$
 (par calcul explicite)

$$v_{10} = 1200 \times 0,95^{10} \simeq (718,48)$$
 (par calcul explicite) ce qui signifie que Dans 10 mois le loyer du tarif 2 sera d'environs 718,48 \in

- (d) formule explicite de v_n en fonction de n, $v_n = 1200 \times 0.95^n$
- (e) $v_n \le 800 \text{ pour } n$?

$$n \times ln(0,95) \le ln(\frac{600}{1200})$$

$$1200 \times 0,95^n \le 600$$

$$n \ge \frac{\ln(\frac{600}{1200})}{\ln(0,95)}$$

$$0,95^n \le \frac{600}{1200}$$

$$\frac{ln(0,95)}{(n \ge 13,51)}$$

$$ln(0,95^n) \le ln(\frac{600}{1200})$$

Dans environs 13,5 mois, le loyer sera d'au moins 600 €

(f)
$$S_{11} = v_0 + v_1 + \dots + v_{11} = \underbrace{\left[1^{er} terme \times \frac{1 - raison^{nb \ termes}}{1 - raison}\right]} = 1200 \times \frac{1 - 0,95^{12}}{1 - 0,95}$$
 soit $S_{11} \simeq \underbrace{\left[11031,35\right)}$

(un total de 11031.35 € sont payés en loyers pour les 12 premiers mois)

3. pour quelle durée la mensualité est-elle la même pour les deux loyers?:

$$1200 \times 0,95^{n} = 600 \times 1,02^{n}$$

$$\frac{1200}{600} = \frac{1,02^{n}}{0,95^{n}}$$

$$ln(\frac{1200}{600}) = ln((\frac{1,02}{0,95})^{n})$$

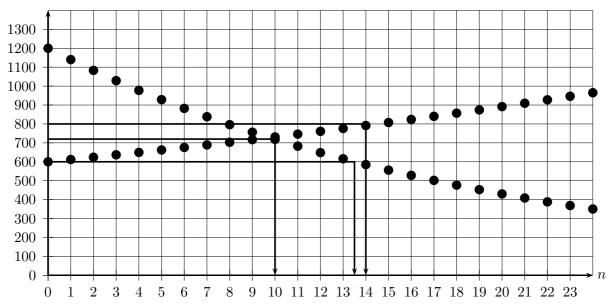
$$ln(\frac{1200}{600}) = n \times ln((\frac{1,02}{0,95}))$$

$$\frac{1200}{600} = (\frac{1,02}{0,95})^{n}$$

$$n = \frac{ln(\frac{1200}{600})}{ln((\frac{1,02}{0,95}))} \quad n \simeq 9,75$$

donc après environs 9,75 mois, les mensualités sont égales

- 4. quel tarif (1 ou 2) conseiller à une entreprise qui a besoin d'un local
 - (a) pour 12 mois : tarif 1 car 8047,25< 11031,35
 - (b) pour 24 mois? $\overline{(\text{tarif 2 car } 18253,11 > 16992,26)}$
- 5. représenter graphiquement les deux suites dans le repère ci dessous et retrouver graphiquement (tracés apparents) les résultats des questions 1.e. 2.e. et 3 ci dessus



6. à partir de quelle durée, le tarif 2 devient-il plus avantageux que le 1? (méthode libre)

$$S_n = u_0 + \dots + u_n = 600 \times \frac{1 - 1.02^{n+1}}{1 - 1.02}$$

$$S'_n = v_0 + \dots + v_n = 1200 \times \frac{1 - 0.95^{n+1}}{1 - 0.95}$$

On utilise le tableau de valeurs de la calculatrice

n	20	21
S_n	15470	16379
S'_n	15827	16235
comparaison de S_n et S'_n	$S_n < S'_n$	$S_n > S'_n$

C'est donc (a partir d'une durée de <math>21 + 1 = 22 mois) de location que le tarif 2 devient plus avantageux que le tarif 1

4.1.3 à retenir

<u>définition 5</u> : (suite géométrique)

quelle que soit la suite u de nombres réels : u est une suite géométrique de raison q et de premier terme u_0

$$\iff$$
 quel que soit $n \in \mathbb{N}: \underbrace{\left(\frac{u_{n+1}}{u_n} = q\right)} \iff \forall n \in \mathbb{N}: \underbrace{\left(\frac{u_{n+1}}{u_{n+1}} = q \ u_n\right)}_{formule\ de\ r\'ecurrence}$

remarque:

le quotient entre deux termes consécutifs quelconques de la suite est constant et reste égal à un nombre noté q et appelé raison de la suite on dit aussi que pour passer d'un terme à un autre, on multiplie toujours par le même nombre appelé raison de la suite

exemples:

- i. 4; 8; 16; 32; 64; ... est une suite géométrique de raison 2 et de 1^{er} terme 4 car on passe d'un terme au suivant en multipliant par 2
- ii. 50; 25; 12, 5; 6, 25;... est une suite géométrique de raison 0, 5 et de 1^{er} terme 50 car on passe d'un terme au suivant en multipliant par 0, 5

propriété 3 : (formule explicite en fonction de n)

quelle que soit la suite notée u ou (u_n) de nombres réels :

si u est géométrique de $\underline{1^{er}}$ terme noté u_0 et de raison notée q alors $u_n = 1^{er}$ $terme \times raison^{(\acute{e}cart\ entre\ 0\ et\ n)}$ $u_n = u_0 \times q^n$ u_n est le $(n+1)^e$ terme où le terme après n variations

si u est géométrique de $\underline{1^{er}}$ terme noté u_1 et de raison notée q alors $u_n = 1^{er}$ $terme \times raison^{(\acute{e}cart\ entre\ 1\ et\ n)}$ $u_n = u_1 \times q^{n-1}$ u_n est le n^e terme où le terme après n-1 variations

remarques:

- i. l'écart entre deux nombre a et b avec $a \le b$ est b-a
- ii. si u est géométrique de 1^{er} terme noté u_k et de raison notée q alors $u_n = 1^{er}$ $terme \times raison^{(\acute{e}cart\ entre\ k\ et\ n)}$ avec $(n \ge k)$ soit $u_n = u_k \times q^{n-k}$

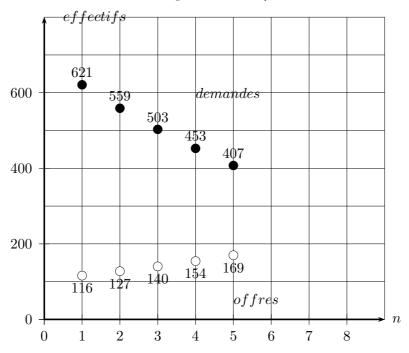
exemples:

- i. soit une suite géométrique de 1^{er} terme $u_1=10$ et de raison 1,5 le n^e terme en fonction de n est $u_n=u_1\times q^{n-1}=10\times 1,5^{n-1}$ par exemple $u_{100}=10\times 1,5^{99}$
- ii. soit une suite géométrique de 1^{er} terme $u_0=10$ et de raison 1,5 le $(n+1)^e$ terme en fonction de n est $u_n=u_0\times q^n=10\times 1,5^n$ par exemple $u_{100}=10\times 1,5^{100}$

4.1.4 exercices

exercice 12:

voici un graphique « corrigé » d'évolution des demandes et des places disponibles pour une certaine filière de BEP dans un département. (la 1ère année est l'année 2001)



soient d_n et p_n deux suites approchant les nombres respectifs de demandes et de places l'année 2000 + n où n est un nombre entier

- 1. justifier pourquoi les suites (d_n) et (p_n) semblent constituer des suites géométriques et donner pour chacune le 1^{er} terme et la raison à 0,1 près
- 2. donner les valeurs de d_6 et p_6 puis d_7 et p_7
- 3. donner les "formules de récurrence" d_{n+1} en fonction de d_n ainsi que p_{n+1} en fonction de p_n
- 4. calculer d_{10} et p_{10}
- 5. donner les "formules explicites" de d_n et p_n en fonction de n
- 6. déterminer par calcul l'année à partir de laquelle la demande devrait atteindre 10
- 7. déterminer par calcul l'année à partir de laquelle l'offre devrait atteindre 300
- 8. résoudre l'inéquation : $d_n < p_n$ et en déduire l'année où la demande sera satisfaite (vérifier graphiquement)

exercice 13:

en 2006, une personne place un capital $C_0=1000$ euros à t=3% d'intérêts composés annuels

cette personne ne touche plus à son compte par la suite

(« intérêts composés » signifie que : chaque année, les intérêts sont de t% du capital précédent)

soit C_n le montant du compte l'année 2006+n

- 1. calculer C_1, C_2, C_3 et C_{10}
- 2. exprimer C_{n+1} en fonction de C_n et préciser la nature le 1er terme et la raison de la suite (C_n)
- 3. exprimer C_n en fonction de n
- 4. déterminer l'année à partir de laquelle le capital aura doublé
- 5. calculer le capital à placer pour avoir 2000 euros après 10 ans avec t=3%
- 6. calculer le taux t pour avoir 2000 euros en 10 ans avec un capital initial de 1000 euros.

exercice 14:

un bateau remorqueur est en train de ramener un iceberg de 1000 tonnes du pôle sud et cet iceberg fond en perdant 2% de sa masse par heure en moyenne on note u_n la masse de l'iceberg dans n heures (n est un nombre entier)

- 1. préciser la nature de la suite numérique (u_n) , son premier terme u_0 et sa raison
- 2. déterminer la masse de l'iceberg après 10h puis 3 jours puis une semaine. $(u_{...} = ...)$
- 3. exprimer la masse de l'iceberg dans n heures en fonction de n $(u_n = ...)$
- 4. dans combien de temps la masse de l'iceberg passera t-elle sous les 600 tonnes? (conclusion en jours et heures à 1 heure prés)

exercice 15:

à un péage autoroutier, un caissier a déjà enregistré le passage de 300 véhicules et a remarqué que le nombre total de véhicules enregistrés augmentait de 5% par heure en moyenne

on note v_n le nombre moyen de véhicules enregistrés par le caissier dans n heures

- 1. préciser la nature de la suite numérique (v_n) , son premier terme v_0 et sa raison
- 2. déterminer le nombre de véhicules enregistrés par le caissier dans 5 heures. $(v_{...} = ...)$
- 3. exprimer le nombre de véhicules enregistrés dans n heures en fonction de n $(v_n = ...)$
- 4. dans combien de temps le nombre de véhicules enregistrés dépassera t-il 2000 ? (conclusion en heures et minutes à 1 minute près)

exercice 16:

la population d'une ville a cette année un effectif de 10000 habitants, et il est prévu un accroissement annuel relatif de la population de 4% par an

- 1. déterminer l'effectif de la population de la ville dans 1 an, dans 10 ans.
- 2. exprimer l'effectif de la population dans n années, noté P_n
- 3. déterminer le nombre d'années pour que la population dépasse 30000 habitants.
- 4. que devrait être l'accroissement annuel de la population pour que l'effectif de 30000 soit atteint dans 16 années.
- 5. une autre ville (Ville B) avec un accroissement relatif annuel de 10% atteindra les 30000 habitants dans 10 années, quel est alors l'effectif de la ville B aujourd'hui?

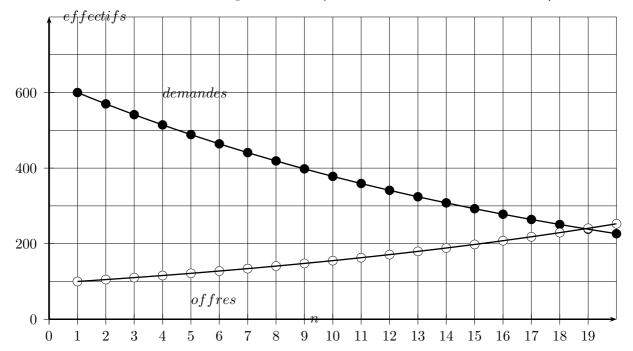
exercice 17:

Monsieur X vient d'obtenir un prêt en s'engageant à en rembourser 70 euros ce mois puis 5% de plus le mois prochain et ainsi de suite.

on note u_n la somme mensualité remboursée dans n mois (n entier)

- 1. Préciser la nature de la suite (u_n) ainsi que son premier terme u_0 et sa raison
- 2. déterminer la mensualité remboursée dans 2 ans. $(u_{...} = ...)$
- 3. exprimer la mensualité remboursée dans n mois en fonction de $n(u_n = ...)$
- 4. déterminer le nombre de mois à attendre pour que la mensualité dépasse les 120 euros
- 5. déterminer la somme totale remboursée en un an.

voici un graphique « corrigé » d'évolution des demandes et des places disponibles pour une certaine filière de BTS dans un département. (la 1ère année est l'année 2001)



soient d_n et p_n deux suites approchant les nombres respectifs de demandes et de places l'année 2000 + n où n est un nombre entier

Le nombre de places est de 100 en 2001 et augmente de 5% par an Le nombre de demandes est de 600 en 2001 et diminue de 5% par an

- 1. en quelle année le nombre de demandes passe t-il sous les 400?
 - (a) graphiquement: ...

	n	
(b) numériquement :	$d_n =$	
	comparaison à	

- (c) algébriquement : (voir cahier)
- 2. en quelle année le nombre de places passe t-il au dessus des 200?
 - (a) graphiquement: ...

	n	
(b) numériquement :	$p_n =$	
	comparaison à	

- (c) algébriquement : (voir cahier)
- 3. en quelle année le nombre de places dépasse t-il celui de demandes?
 - (a) graphiquement: ...

	n	
(b) numériquement :	$d_n =$	
	$p_n =$	
	comparaison de	

(c) algébriquement : (voir cahier)

4.1.5	${\bf corrig\acute{e}s}$	exercices

4.2somme des termes

activité : somme des premiers termes 4.2.1

1. soit u, une suite géométrique de 1^{er} terme u_0 et de raison qon cherche la valeur de la somme des n premiers termes : $S = u_0 + u_0 q + u_0 q^2 + u_0 q^3 + ... + u_0 q^{n-1}$ observez la succession de déductions suivantes :

$$S = u_0 + u_0 q + u_0 q^2 + u_0 q^3 + \dots + u_0 q^{n-1}$$

$$qS = u_0q + u_0q^2 + u_0q^3 + u_0q^4 + ... + u_0q^n$$
 (1^{ère} ligne ×q)

$$S-qS=u_0-u_0q^n$$
 (2^e ligne moins 1^{ère} ligne)

$$S(1-q) = u_0(1-q^n)$$
 (on factorise)

$$S = u_0 \frac{1 - q^n}{1 - q}$$
 (on isole S)

$$S = 1^{er} terme \times \frac{1 - raison^{nombre\ de\ termes}}{1 - raison}$$

2. utiliser le résultat obtenu ci dessus pour calculer les sommes suivantes

(a)
$$S = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512$$

$$S = \dots$$

(b)
$$S = 1024 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4$$

$$S = \dots$$

4.2.2 à retenir

propriété 4 : (formule de la somme)

quelle que soit la suite notée u ou (u_n) de nombres réels :

si
$$u$$
 est géométrique de 1^{er} terme noté $\overline{u_0}$

alors
$$S = u_0 + u_1 + \dots + u_n = \underbrace{u_0 \times \frac{1 - q^{n+1}}{1 - q}} = \underbrace{premier \times \frac{1 - q^{(nombre\ de\ termes)}}{1 - q}}_{1 - q}$$

S est la somme des n+1 premiers termes

si
$$u$$
 est géométrique de 1^{er} terme noté u

si
$$u$$
 est géométrique de 1^{er} terme noté $\boxed{u_1}$ alors $S = u_1 + ... + u_n = \underbrace{u_1 \times \frac{1 - q^n}{1 - q}} = \underbrace{premier \times \frac{1 - q^{(nombre\ de\ termes)}}{1 - q}}$

S est la somme des n premiers termes

exemples:

i. soit une suite géométrique de 1^{er} terme $u_1 = 10$ et de raison 1,5

$$S = u_1 + u_2 + \dots + u_{20} = ?$$

$$S = premier \times \frac{1 - q^{(nombre\ de\ termes)}}{1 - q} = u_1 \times \frac{1 - q^{20}}{1 - q} = 10 \times \frac{1 - 1, 5^{20}}{1 - 1, 5} \simeq 66485$$

ii. soit une suite géométrique de 1^{er} terme $u_0=10$ et de raison 1,5

$$S = u_0 + u_2 + \dots + u_{20} = ?$$

$$S = premier \times \frac{1 - q^{(nombre\ de\ termes)}}{1 - q} = u_1 \times \frac{1 - q^{21}}{1 - q} = 10 \times \frac{1 - 1, 5^{21}}{1 - 1, 5} \simeq 99737$$

4.2.3 exercices

exercice 18:

calculer astucieusement la somme suivante en justifiant votre méthode

- 1. S = 5 + 10 + 20 + 40 + 80 + 160 + 320 + 640 + 1280 + 2560
- **2.** S = 1600 + 800 + 400 + 200 + 100 + 50 + 25 + 12,5

exercice 19:

- 1. une personne rembourse un prêt selon les modalités suivantes :
 - 50 euros la première mensualité

les mensualités augmentent de 4% chaque mois

soit u_n le montant de la $n^{i\grave{e}me}$ mensualité

- (a) calculer la somme des mensualités pour les 12 premiers mois
- (b) calculer la somme des mensualités pour les 3 premières années
- 2. une personne rembourse un prêt selon les modalités suivantes :

500 euros la première mensualité

les mensualités baissent de 4% chaque mois

soit u_n le montant de la $n^{i\grave{e}me}$ mensualité

- (a) calculer la somme des mensualités pour les 12 premiers mois
- (b) calculer la somme des mensualités pour les 3 premières années

exercice 20:

Un sportif s'entraîne 10 mn à la première séance puis 10% de plus à chaque séance. soit u_n la durée d'entraînement dans n séances

- 1. donner les valeurs de u_0 , u_1 , u_2 et u_{29}
- 2. calculer la durée totale $S_{29} = u_0 + u_1 + \ldots + u_{29}$ pour les 30 premières séances

exercice 21:

une personne décide de d'arrêter de fumer

Ce mois ci elle a dépensé 430 euros en tabac, chaque mois, elle diminue sa dépense en tabac de 5%

Soit v_n la dépense en tabac le $n^{i \`{e}me}$ mois avec $v_1 = 430$

- 1. donner les valeurs de v_2 et v_3 .
- 2. calculer la somme totale dépensée pour les 5 prochaines années (60 mois)

4.2.4	${\bf corrig\acute{e}s}$	exercices

4.2.5 Q.C.M. suites géométriques avec somme des termes

Il n'y a q'une seule bonne réponse pour chaque question, trouvez la et justifiez par un calcul

Questions		Réponses
1. Quelle suite est géométrique?		□ 10 12 14,4 17,28
		□ 10 8 6,4 5,1
		\Box 10 15 22,5 33,75
	La suite u est géométrique,	$\square \simeq 61, 16$
2.	$u_0 = 10$ et $q = 1, 1$ que vaut u_{20} ?	$\square \simeq 67,27$
	1 20	$\square \simeq 74$
	La suite u est géométrique,	$\square \simeq 55, 6$
3.	$u_1 = 10$ et $q = 1, 1$ que vaut u_{20} ?	$\square \simeq 61,15$
	1	$\square \simeq 61, 16$
	Que vaut le 20^e terme de la suite	$\square \simeq 61,15$
4.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\square \simeq 61, 16$
	,,	$\square \simeq 67,27$
	La suite u est géométrique,	$\square \ u_n = 5n + 10$
5.	$u_0 = 5$ et $q = 10$ que vaut u_n en fonction de n ?	$\square \ u_n = 10 \times 5^n$
	1	$\square \ u_n = 5 \times 10^n$
	La suite u est géométrique,	$\square \ u_n = 0, 5 \times 10^n$
6.	$u_1 = 5$ et $q = 10$ que vaut u_n en fonction de n ?	$\square \ u_n = 10 \times 5^{n-1}$
		$\square \ u_n = 5 \times 10^n$
	La suite u est géométrique,	$\square \ u_{n+1} = u_n + 3$
7.	de premier terme 4 et de raison 3 quelle est la formule de récurrence de u_{n+1} en fonction de u_n ?	$\square u_{n+1} = 4u_n$
		$\square u_{n+1} = 3u_n$
	La quita a est géométrique	
8.	La suite u est géométrique, $u_0 = 50$ et $q = 1, 1$	\square $n \ge 7$
0.	à partir de quelle valeur de n a t-on $u_n > 100$?	\square $n \ge 8$
	a t-on $u_n > 100$:	\square $n > 8$
	La suite u est géométrique,	\square $n \ge 21$
9.	$u_0 = 1000$ et $r = 0, 9$ à partir de quelle valeur de n	\square $n > 21$
	a t-on $u_n < 100$?	\square $n > 22$
	La suite u est géométrique,	$\square \simeq 103,99$
10.	$u_1 = 5$ et $q = 1, 2$ que vaut $S = u_1 + + u_{10}$?	$\square \simeq 129,79$
	que vaux $\nu=u_1++u_{10}$:	$\square \simeq 160,75$
	La suite u est géométrique,	$\square \simeq 499,38$
11.	$u_0 = 100$ et $q = 0, 8$ que vaut $S = u_0 + u_1 + + u_{30}$?	$\square \simeq 499,5$
	que vaux $D=u_0+u_1++u_{30}$:	$\square \simeq 499,6$

4.2.6	4.2.6 corrigé Q.C.M. suites géométriques avec somme des termes Il n'y a q'une seule bonne réponse pour chaque question, trouvez la et justifiez par un calcul					

	Questions	Réponses
1. (Quelle suite est géométrique?	Ø 10 15 22,5 33,75
		car on multiplie toujours par 1,5 pour passer d'un terme à l'autre
2.	La suite u est géométrique, $u_0 = 10$ et $q = 1, 1$ que vaut u_{20} ?	
3.	La suite u est géométrique, $u_1 = 100$ et $q = 1, 1$ que vaut u_{20} ?	
4.	Que vaut le 20^e terme de la suite géométrique? 10 11 12,1 13,31	
5.	La suite u est géométrique, $u_0 = 5$ et $q = 10$ que vaut u_n en fonction de n ?	
6.	La suite u est géométrique, $u_1 = 5$ et $q = 10$ que vaut u_n en fonction de n ?	
7.	La suite u est géométrique, de premier terme 4 et de raison 3 formule de récurrence?	
8.	La suite u est géométrique, $u_0 = 50$ et $q = 1, 1$ à partir de quelle valeur de n a t-on $u_n > 100$?	$\mathbf{Z} n \ge 8$ $\mathbf{car} u_n > 100 \Longleftrightarrow 50 \times 1, 1^n > 100$ $\Leftrightarrow 1, 1^n > \frac{100}{50} \Longleftrightarrow 1, 1^n > 2$ $\Leftrightarrow n > \frac{\log(2)}{\log(1, 1)} \Longleftrightarrow n > 7, 27 \Longrightarrow n \ge 8$
9.	La suite u est géométrique, $u_0=1000$ et $q=0,9$ à partir de quelle valeur de n a t-on $u_n<100$?	$\mathbf{Z} n > 21$ $\mathbf{car} u_n < 100 \Longleftrightarrow 1000 \times 0, 9^n < 100$ $\Leftrightarrow 0, 9^n < \frac{100}{1000} \Longleftrightarrow 0, 9^n < 0, 1$ $\Leftrightarrow n > \frac{\log(0, 1)}{\log(0, 9)} \Longleftrightarrow n > 21, 85 \Longrightarrow n > 21$
10.	La suite u est géométrique, $u_1 = 5$ et $q = 1, 2$ que vaut $S = u_1 + + u_{10}$?	$S = 1^{er} \times \frac{1 - raison^{nb \ termes}}{1 - raison}$ $S = 5 \times \frac{1 - 1, 2^{10}}{1 - 1, 21} \simeq 129,79$
11.	La suite u est géométrique, $u_0=100$ et $q=0,8$ que vaut $S=u_0++u_{30}$?	$S = 1^{er} \times \frac{1 - raison^{nb \ termes}}{1 - raison}$ $S = 100 \times \frac{1 - 0,8^{31}}{1 - 0,8} \simeq 499,5$

5 études des variations de suites numériques

5.1 activités

5.1.1 activité 1 : sens de variation

- 1. besoin d'une définition
 - (a) soit la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = (-1)^n \times n$
 - i. est-elle croissante ou décroissante? (on aura besoin de définir le sens de variation d'une suite)
 - ii. que deviennent ses termes quand n tend vers $+\infty$?
 - (b) soit la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = (-1)^n \times n^{-1} = (-1)^n \times \frac{1}{n}$
 - i. est-elle croissante ou décroissante? (on aura besoin de définir le sens de variation d'une suite)
 - ii. que deviennent ses termes quand n tend vers $+\infty$?
 - (c) utiliser la définition pour étudier les variations de la suite définie pour $n \ge 0$ par $u_n = 2n 8$
 - (d) de même pour la suite définie pour $n \ge 1$ par $u_n = n^2 2n + 1$
 - (e) de même pour la suite définie par $u_{n+1} = u_n + n$ avec $u_1 = -10$
 - (f) de même pour la suite définie par $u_{n+1} = u_n + 9 n$ avec $u_0 = 0$
- 2. quand c'est "plus facile" avec le quotient de termes positifs stricts plutôt qu'avec la différence
 - (a) justifier que : quels que soient les réels <u>positifs stricts</u> a et b, $a < b \iff 1 < \frac{b}{a}$
 - (b) en déduire une propriété pour "fixer les variations" d'une suite de termes positif stricts
 - (c) utiliser cette propriété pour déterminer le sens de variation des suites (vérifier que ces suites sont à termes positifs stricts au préalable)

i.
$$u_n = \frac{10 \times 2^n}{3^{n+1}}$$
 pour $n \ge 0$

ii.
$$u_n = \frac{5^{n+1}}{2 \times 3^n}$$
 pour $n \ge 0$

iii.
$$u_{n+1} = u_n \times \frac{12n+1}{10n+10}$$
 avec $u_0 = 10$ (récurrence pour la positivité)

- 3. cas général pour une suite explicite définie par une fonction : $u_n = f(n)$
 - (a) soit la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = f(n)$ où f est une fonction définie sur \mathbb{R}^+ strictement croissante. Cette suite est-elle croissante ou décroissante? (à démontrer)
 - (b) quel est le sens de variation de la suite définie pour $n \ge 0$ par $u_n = \sqrt{3n+1}$
 - (c) de même pour la suite définie pour $n \ge 1$ par $u_n = 6n^3 3n^2$
- 4. un exemple où "ça marche" pour une suite récurrente définie par une fonction : $u_{n+1}=f(u_n)$ soit la suite définie par $u_{n+1}=\frac{1}{2}u_n+4$ avec $u_0=2$
 - (a) montrer que : $\forall n \in \mathbb{N}, u_n < 8 \Longrightarrow u_{n+1} < 8$
 - (b) sachant que : $u_0 < 8$, qu'en déduire pour tous les termes de la suite?
 - (c) exprimer $u_{n+1} u_n$ en fonction de n
 - (d) montrer que $\forall n \in \mathbb{N}, u_{n+1} u_n > 0$
 - (e) en déduire le sens de variation de la suite u
 - (f) quelle semble être sa "valeur limite"

```
<u>définition 6</u> : (sens de variation d'une suite)
     Soit (u_n) une suite numérique réelle définie pour tout n \geq p avec p \in \mathbb{N}
     (u_n) | croît strictement | à partir du rang p équivaut à \forall n \in \mathbb{N} : n \geq p \Longrightarrow (\overline{u_{n+1} > u_n})
     (u_n) | décroît strictement | à partir du rang p équivaut à \forall n \in \mathbb{N} : n \geq p \Longrightarrow (u_{n+1} < u_n)
     (u_n) est [constante] à partir du rang p équivaut à \forall n \in \mathbb{N} : n \geq p \Longrightarrow \overline{u_{n+1} = u_n}
   Remarque: si le sens de variation d'une suite ne change pas, on dit qu'elle est "monotone"
    (croissante ou décroissante)
propriété 5 : (sens de variation et différence de 2 termes consécutifs quelconques)
     Soit (u_n) une suite numérique réelle définie pour tout n \geq p avec p \in \mathbb{N}
     (u_n) | croît strictement | à partir du rang p équivaut à \forall n \in \mathbb{N} : n \geq p \Longrightarrow (u_{n+1} - u_n > 0)
     (u_n) | décroît strictement | à partir du rang p équivaut à \forall n \in \mathbb{N} : n \geq p \Longrightarrow (u_{n+1} - u_n < 0)
     (u_n) est constante à partir du rang p équivaut à \forall n \in \mathbb{N} : n \geq p \Longrightarrow (u_{n+1} - u_n = 0)
   Preuve: (vient de: \forall a \in \mathbb{R}, \forall b \in \mathbb{R}, a < b \iff a - b < 0) (\forall a \in \mathbb{R}, \forall b \in \mathbb{R}, a = b \iff a - b = 0)
propriété 6 : (variations d'une suite positive stricte et quotient de 2 termes consécutifs quel-
conques)
     Soit (u_n) une suite numérique réelle | positive stricte | définie pour tout n \geq p avec p \in \mathbb{N}
     (u_n) <u>croît strictement</u> à partir du rang p <u>équivaut à</u> \forall n \in \mathbb{N} : n \ge p \Longrightarrow \left(\frac{u_{n+1}}{u_n} > 1\right)
     (u_n) décroît strictement à partir du rang p équivaut à \forall n \in \mathbb{N} : n \geq p \Longrightarrow \left(\frac{u_{n+1}}{u_n} < 1\right)
     (u_n) est constante à partir du rang p équivaut à \forall n \in \mathbb{N} : n \ge p \Longrightarrow \left[\frac{u_{n+1}}{u_n} = 1\right]
   Preuve : (vient de : \forall a > 0, \forall b > 0 : a < b \iff 1 < \frac{b}{a})
propriété 7 : (variations d'une suite définie par une formule explicite u_n = f(n))
     Soit f une fonction réelle définie sur [p; +\infty[ où p \in \mathbb{N}
     Soit (u_n) une suite numérique réelle définie pour tout n \in \mathbb{N} par u_n = f(n)
         croît strictement | sur [p; +\infty[ implique (u_n) | croît strictement | à partir du rang p
         décroît strictement ] sur [p; +\infty[ implique (u_n) ] décroît strictement ] à partir du rang p
         est constante | sur [p; +\infty[ implique (u_n) est | constante | à partir du rang p
   Preuve (vient de : f croît strictement sur \mathbb{R}^+ \iff \forall a \in \mathbb{R}^+, \forall b \in \mathbb{R}^+, a < b \Longrightarrow f(a) - f(b) < 0
   Remarque:
   les réciproques sont fausses, ce n'est pas parce que (u_n) croît que f croît
```

(car f peut changer de sens de variation entre n et n+1)

exercice 22 : (variations des suites arithmétiques ou géométriques)

- 1. soit (u_n) une suite arithmétique de raison r, rappeler la formule de récurrence puis justifier le sens de variation de (u_n) en fonction de r
- 2. soit (u_n) une suite géométrique de raison q > 0, rappeler la formule de récurrence puis justifier le sens de variation de (u_n) en fonction de q
- 3. rappeler la formule explicite d'une suite arithmétique de premier terme u_0 et de raison r
- 4. rappeler la formule explicite d'une suite géométrique de premier terme u_0 et de raison q
- 5. déduire de ce qui précède les sens de variation de chacune des suites

(a)
$$u_n = \frac{n+24}{3} \text{ pour } n \ge 0$$

(d)
$$u_n = \frac{1}{0.2 \times 0.5^n}$$
 pour $n \ge 0$

(b)
$$u_n = \frac{16}{2 \times 3^n} \text{ pour } n \ge 0$$

(e)
$$u_{n+1} = u_n - 0.75$$
 avec $u_0 = 10$

(c)
$$u_n = \frac{10 - 4n}{2}$$
 pour $n \ge 0$

(f)
$$u_{n+1} = 1,75u_n$$
 avec $u_0 = 10$

exercice 23 : (suites non nécessairement arithmétiques ou géométriques)

- 1. soit la suite définie pour tout $n \in \mathbb{N}$ par $u_n = n^3 3n^2 + 2n$
 - (a) vérifier que $u_0 = u_1 = u_2$
 - (b) peut-on en déduire que (u_n) est constante sur \mathbb{N} ?
 - (c) démontrer que (u_n) croît à partir du rang 2
- 2. soit la suite définie pour tout $n \in \mathbb{N}^*$ par $u_n = 200 4n \frac{100}{n}$
 - (a) vérifier que $u_1 < u_2 < u_3 < u_4 < u_5$
 - (b) qu'en déduire pour le sens de variation de (u_n) pour tout $n \in \mathbb{N}$?
 - (c) démontrer que (u_n) décroît à partir du rang 5

exercice 24:

étudier les variations de (u_n) dans chaque cas

- 1. (u_n) définie pour tout $n \in \mathbb{N}$ par $u_{n+1} = u_n + n^2 7n 8$ et $u_0 = 1$
- 2. (u_n) définie pour tout $n \in \mathbb{N}^*$ par $u_n = \frac{1,5^n}{n^2}$ (utiliser 2 méthodes)
- 3. (u_n) définie pour tout $n \in \mathbb{N}$ par $u_{n+1} = (n+2)u_n$ et $u_0 = 10$ (il faudra justifier le signe de u_n par récurrence)
- 4. (u_n) définie pour tout $n \ge 2$ par $u_{n+1} = u_n(1 \frac{1}{n})$ et $u_2 = 100$ (il faudra justifier le signe de u_n par récurrence)

exercice 25 : soit la suite définie par $u_{n+1} = \frac{1}{2}u_n + 3$ avec $u_0 = 14$

- 1. montrer que : $\forall n \in \mathbb{N}, u_n > 6 \Longrightarrow u_{n+1} > 6$
- 2. sachant que : $u_0 > 6$, qu'en déduire pour tous les termes de la suite?
- 3. exprimer $u_{n+1} u_n$ en fonction de n
- 4. montrer que $\forall n \in \mathbb{N}, u_{n+1} u_n < 0$
- 5. en déduire le sens de variation de la suite u
- 6. quelle semble être sa "valeur limite"

5.4	corrigés	exercices

6 approche de la notion de limite à partir d'exemples

6.1 activités

6.1.1 activité 1 : approche de la notion de limite

1. suite convergente vers une limite $l \in \mathbb{R}$

soit la suite (u_n) définie par $u_n = 1 + \frac{1}{n}$ pour $n \ge 1$

- (a) à la calculatrice, conjecturer une "valeur limite" l pour (u_n) quand n tend vers $+\infty$
- (b) démonter que la suite est strictement décroissante pour $n \ge 1$
- (c) justifier que $u_n > 1$ pour tout $n \ge 1$
- (d) trouver N tel que : pour tout $n \ge N$, $0 < u_n 1 < 10^{-6}$ (la distance entre 1 et u_n est inférieure à 10^{-6})
- (e) est-il possible de trouver N tel que pour tout $n \ge N$, $0 < u_n 1 < 10^{-p}$ où p est aussi grand que l'on veut?
- (f) que devient la distance entre u_n et 1 lorsque n tend vers $+\infty$? que dit-on alors? (en terme de limite)

2. suite divergente vers $+\infty$

soit la suite (u_n) définie par $u_n = 1 + n^2$ pour $n \ge 0$

- (a) à la calculatrice, conjecturer une "limite" pour (u_n) quand n tend vers $+\infty$
- (b) démonter que la suite est strictement croissante pour $n \ge 0$
- (c) justifier que $u_n > 1$ pour tout $n \ge 0$
- (d) trouver N tel que : pour tout $n \ge N$, $u_n > 10^6$
- (e) est-il possible de trouver N tel que pour tout $n \ge N$, $u_n > 10^p$ où p est aussi grand que l'on veut?
- (f) que devient la valeur de u_n lorsque n tend vers $+\infty$? que dit-on alors? (en terme de limite)

3. suite divergente vers $-\infty$

soit la suite (u_n) définie par $u_n = 1 - \sqrt{n}$ pour $n \ge 0$

- (a) à la calculatrice, conjecturer une "limite" pour (u_n) quand n tend vers $+\infty$
- (b) démonter que la suite est strictement décroissante pour $n \ge 0$
- (c) justifier que $u_n < 1$ pour tout $n \ge 0$
- (d) trouver N tel que : pour tout $n \ge N$, $u_n < -10^6$
- (e) est-il possible de trouver N tel que pour tout $n \ge N$, $u_n < -10^p$ où p est aussi grand que l'on veut ?
- (f) que devient la valeur de u_n lorsque n tend vers $+\infty$? que dit-on alors? (en terme de limite)

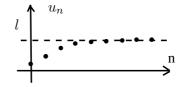
4. suite divergente sans limite

soit la suite (u_n) définie par $u_n = (-1)^n \times n$ pour $n \ge 0$

- (a) cette suite semble t-elle converger vers une valeur?
- (b) cette suite diverge t-elle vers $+\infty$?
- (c) cette suite diverge t-elle vers $-\infty$?
- (d) conclusion

<u>définition 7</u> : (suite convergente vers un réel)

soit (u_n) une suite réelle et $l \in \mathbb{R}$ un réel (u_n) converge vers l



équivaut à

la distance entre u_n est l "se rapproche" de 0 lorsque n tend vers $+\infty$

Remarques:

- 1. on note alors $\overline{\lim_{n\to+\infty} u_n = l}$
- 2. la distance entre u_n et l est $|u_n l|$

Exemple:

$$u_n = 1 + \frac{1}{n}$$
 pour $n \ge 1$

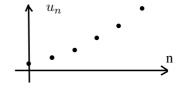
n	1	2	10	100	1000	10000
u_n	2	1,5	1,1	1,01	1,001	1,0001
$ u_n - 1 $	1	$0,\!5$	0,1	0,01	0,001	0,0001

 $\lim_{n \to +\infty} u_n = 1$

(preuve en activité)

 $\underline{\mathsf{d\acute{e}finition}\; 8}\; : \; (suite\; divergente\; vers\; +\infty)$

soit (u_n) une suite réelle (u_n) diverge vers $+\infty$



équivaut à

tous les termes de (u_n) sont aussi grands que l'on veut à partir d'un certain rang

Remarques:

1. on note alors
$$\left(\frac{\lim_{n \to +\infty} u_n = +\infty}{\right)$$

Exemple:

$u_n = 1 + n^2$	pour	n	\geq	1
-----------------	------	---	--------	---

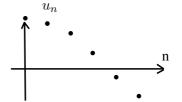
(preuve en activité)

n	1	2	10	100	1000	10000
u_n	2	5	101	10001	1000001	100000001

 $\lim_{n \to +\infty} u_n = +\infty$

$\underline{\mathsf{d\'efinition}\; 9}\; : (suite\; divergente\; vers\; -\infty)$

soit (u_n) une suite réelle (u_n) diverge vers $-\infty$



équivaut à

tous les termes de (u_n) sont aussi petits que l'on veut à partir d'un certain rang

Remarques:

1. on note alors
$$\lim_{n \to +\infty} u_n = -\infty$$

Exemple:

$$u_n = 1 - \sqrt{n} \text{ pour } n \ge 1$$
 $\begin{vmatrix} n & 1 & 2 & 10 & 100 & 1000 & 10000 \\ u_n & 0 & \simeq -0.4 & \simeq -2.2 & -9 & \simeq -30.7 & -99 \end{vmatrix} \lim_{n \to +\infty} u_n = -\infty$ (preuve en activité)

exercice 26:

à la calculatrice, étudier le comportement de la suite (u_n) quand n tend vers $+\infty$ et faire une conjecture (variations et limite)

1.
$$u_n = \frac{-2n+8}{3n+10}$$
 pour $n \ge 0$ 5. $\begin{cases} u_{n+1} = 0, 5u_n + 3, 5 \\ u_0 = 10 \end{cases}$ 8. $\begin{cases} u_{n+1} = -2u_n + 4, 5 \\ u_0 = 1 \end{cases}$

5.
$$\begin{cases} u_{n+1} = 0, 5u_n + 3, 5 \\ u_0 = 10 \end{cases}$$

8.
$$\begin{cases} u_{n+1} = -2u_n + 4, 5 \\ u_0 = 1 \end{cases}$$

2.
$$u_n = \frac{-2n+8}{3n^2+10}$$
 pour $n \ge 0$
3. $u_n = \frac{-2n^2+8}{3n+10}$ pour $n \ge 0$
6.
$$\begin{cases} u_{n+1} = 0, 5u_n + 3, 5 \\ u_0 = 7 \end{cases}$$
9.
$$\begin{cases} u_{n+1} = 1, 5u_n + 0, 5 \\ u_0 = 2 \end{cases}$$

6.
$$\begin{cases} u_{n+1} = 0, 5u_n + 3, 5 \\ u_0 = 7 \end{cases}$$

9.
$$\begin{cases} u_{n+1} = 1, 5u_n + 0, 5 \\ u_0 = 2 \end{cases}$$

4.
$$\begin{cases} u_{n+1} = 0, 5u_n + 3, 5 \\ u_0 = 1 \end{cases}$$
 7.
$$\begin{cases} u_{n+1} = -0, 8u_n + 4, 5 \\ u_0 = 10 \end{cases}$$
 10.
$$\begin{cases} u_{n+1} = 1, 5u_n + 0, 5 \\ u_0 = -2 \end{cases}$$

7.
$$\begin{cases} u_{n+1} = -0.8u_n + 4.5 \\ u_0 = 10 \end{cases}$$

10.
$$\begin{cases} u_{n+1} = 1, 5u_n + 0, 5 \\ u_0 = -2 \end{cases}$$

exercice 27:

- 1. soit la suite (u_n) définie par $u_n = \frac{2n^2 1}{n^2}$ pour $n \ge 1$
 - (a) à la calculatrice, conjecturer une "valeur limite" l pour (u_n) quand n tend vers $+\infty$
 - (b) montrer que $u_n = 2 \frac{1}{n^2}$ pour $n \ge 1$
 - (c) démonter que la suite est strictement croissante pour $n \ge 1$
 - (d) justifier que $u_n < 2$ pour tout $n \ge 1$
 - (e) trouver N tel que : pour tout $n \ge N$, $0 < 2 u_n < 10^{-6}$
 - (f) est-il possible de trouver N tel que pour tout $n \ge N$, $0 < 2 u_n < 10^{-p}$ où p est aussi grand que l'on veut?
 - (g) que devient la distance entre u_n et 2 lorsque n tend vers $+\infty$? que dit-on alors? (enterme de limite)
- 2. Dans une ville, cette année (année 1), un certain nombre de personnes disposent du très haut débit internet

On sait que l'année n, le nombre de personnes disposant du très haut débit internet est de $u_n = \frac{2n^2 - 1}{n^2}$ (en milliers)

- (a) combien de personnes disposent du très haut débit cette année?
- (b) combien de temps attendre pour que 2 milliers de personnes soient équipées?

exercice 28:

soit la suite (u_n) définie par $\left\{ \begin{array}{l} u_{n+1}=0, 8u_n+2 \\ u_0=1 \end{array} \right.$

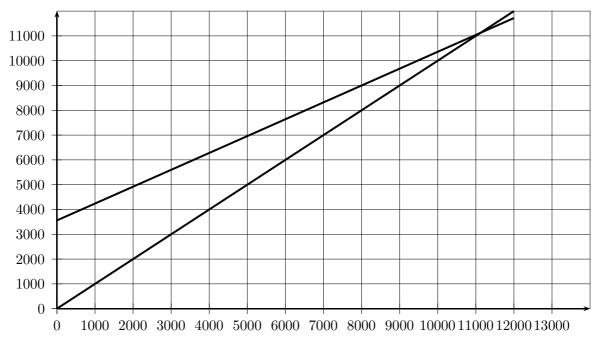
- 1. à la calculatrice, conjecturer une "valeur limite" l pour (u_n) quand n tend vers $+\infty$
- 2. soit la suite $V_n = u_n 10$ pour $n \ge 0$
 - (a) démontrer que $V_{n+1} = 0,8V_n$ pour $n \ge 0$
 - (b) en déduire la nature de la suite (V_n) ainsi que son premier terme et sa raison
 - (c) en déduire l'expression de V_n en fonction de n
 - (d) en déduire l'expression de u_n en fonction de n
 - (e) en déduire la limite de (u_n) quand n tend vers $+\infty$
- 3. cette année, un site a 1 millier d'abonnés,

chaque année il perd 20% de ses abonnés mais en gagne 2 milliers

- (a) vérifier que le nombre d'abonnés au site dans n années est donné par u_n ci dessus
- (b) qu'en déduire pour le nombre d'abonnés à long terme?

Soit (u_n) la suite définie par : $u_0 = 5500$ et pour tout entier naturel n, $u_{n+1} = 0.68 \times u_n + 3560$.

1.(a) Utiliser les droites d'équations y = x et y = 0.68x + 3560 pour construire les quatre premiers termes de la suite (u_n) .



Conjecturer le sens de variation de la suite (u_n) ainsi que la limite de la suite (u_n) .

(b) Quel est le rôle de l'algorithme suivant?

```
A = 5500 ;
k = 0;
tant\_que \ A < 11000 \ faire
k \ prend \ la \ valeur \ k + 1 ;
A \ prend \ la \ valeur \ 0,68 \times A + 3560 ;
fin \ tant\_que
Sortie : Afflicher \ k;
```

- 2. Soit (v_n) la suite définie pour tout entier naturel n, par $v_n = u_n 11125$.
 - (a) Démontrer que (v_n) est une suite géométrique dont on précisera le premier terme et la raison.
 - (b) Exprimer, pour tout entier naturel n, v_n en fonction de n. En déduire que, pour tout entier naturel n, $u_n = 11125 - 5625 \times 0,68^n$.
 - (c) La suite (u_n) est-elle convergente?

partie b

Une revue spécialisée est diffusée uniquement par abonnement. Une étude statistique a permis de constater que d'une année sur l'autre, 32% des abonnés ne renouvellent pas leur abonnement et 3560 nouvelles personnes souscrivent un abonnement.

En 2010, il y avait 5 500 abonnés à cette revue.

- 1. Donner une estimation du nombre d'abonnés à cette revue en 2012.
- 2. Pour tout nombre entier naturel n, on note u_n le nombre d'abonnés à la revue l'année 2010+n.
 - (a) Justifier que pour tout entier n, $u_{n+1} = 0.68 \times u_n + 3560$.
 - (b) Est-il possible d'envisager au bout d'un nombre d'années suffisamment grand, une diffusion supérieure à 12 000 abonnés?
 - (c) À l'aide de la calculatrice, déterminer l'année à partir de laquelle le nombre d'abonnés à la revue sera supérieur à 11 000.

6.4	corrigés	exercices

7 devoir maison

7.1 dm 1

Exercices : 1-6-10-16-21 du polycopié

exercices : 115-140 pages 136 et 140 du manuel

7.3 dm 2

exercices : 41-42-44-45 page 158 du manuel

7.4	$\operatorname{corrig\'e} \operatorname{dm} 2$	
-----	--	--

- 8 évaluations
- 9 travaux pratiques
- 9.1 tp 1

Nom:

TP: Suites Arithmétiques / Suites Géométriques / Suites Arithmético-Géométriques

Situation:

On souhaite comparer des tarifs de location de 3 locaux de stockage.

- Tarif 1:5 000 € le premier mois puis augmentation de 5% par mois
- Tarif 2: 4500 € le premier mois puis augmentation de 450 € par mois
- Tarif 3 : 4750 € le premier mois puis augmentation de 7% par mois avec une remise de 100 €

soit u_n (resp : v_n , w_n) le montant du loyer de tarif 1 (resp : tarif 2 , tarif 3) après n mois de location

- 1. ouvrir une feuille de calcul automatique *(tableur)*, la sauvegarder sous le nom "tp_suites_numeriques", dans le dossier "Mes document" dans un sous-dossier "Maths" que vous aurez crée au préalable
- 2. recopier dans cette feuille de calcul le contenu des cellules comme indiqué ci dessous

	A	В	C	D	
1		premier loyer	taux d'évolution (%)		
2	tarif 1	5000	5		
3					
4		premier loyer	évolution (euros)		
5	tarif 2	4500	450		
6					
7		premier loyer	taux d'évolution (%)	évolution (euros)	
8	tarif 3	4750	7	-100	
9					
10	n	un	vn	wn	
11	0				
12					

on souhaite obtenir dans la colonne B (resp : C, D) le tableau de valeurs de la suite u (resp : v, w) pour n allant de 0 à 24

- (a) i. compléter par les nombres attendus : $u_0 = 5000$ $v_0 = ...$ $w_0 = ...$
 - ii. la formule à entrer en B11 est donc : = B2

la formule à entrer en C11 est donc : ...

la formule à entrer en D11 est donc : ...

- (b) i. entrer dans la cellule A12 la formule suivante : = A11 + 1
 - ii. donner les formules de récurrence pour u et v:

$$u_{n+1} = \dots \qquad v_{n+1} = \dots \qquad \qquad w_{n+1} = 1,07 \times w_n - 100$$

- iii. la suite u est de nature ... car pour passer d'un terme à l'autre on toujours par le même nombre $q=\dots$ appelé ... de la suite
- iv. la suite v est de nature ... car pour passer d'un terme à l'autre on ... toujours le même nombre $r=\dots$ appelé ... de la suite
- v. la suite v est de nature ... car pour passer d'un terme à l'autre on ... toujours par le même nombre $q=\dots$ puis on ... toujours le même nombre $r=\dots$
- vi. la formule à entrer en B12 est donc : = B11*(1+C\$2/100) (attention au dollard \$) à quoi sert le dollar \$ devant le 2 dans la formule précédente? : ...

la formule à entrer en C12 est donc : ...

la formule à entrer en D12 est donc : ...

- (c) sélectionner la plage de cellules A12:D12 et étirer les formules vers le bas jusqu'à la ligne 34 afin d'obtenir les tableaux de valeurs attendu
- (d) donner alors les valeurs approchées entière de : $u_{23} \simeq ...$, $v_{23} = ...$ et $w_{23} \simeq ...$ quel est le tarif le plus avantageux après 23 mois? : ...
- (e) obtenir dans un même repère les courbes de ces trois suites pour n allant de 0 à 23 (sélectionner la plage de cellules $A11: D34 \rightarrow insertion \rightarrow graphique \rightarrow Nuages de points <math>\rightarrow Nuage$ de points reliés par une courbe $\rightarrow terminer$)
- 3. déduire du graphique et du tableau de valeurs le tarif le moins cher en fonction du nombre de mois \boldsymbol{n}

 $(entrer\ \'eventuellement\ =MIN(B11\ :D11)\ en\ E11\ et\ =SI(E11=B11\ ;1\ ;SI(E11=C11\ ;2\ ;3))$ $en\ F11\ puis\ tirer\ les\ formules\ vers\ le\ bas\ pour\ obtenir\ automatiquement\ le\ r\'esultat\)$

- pour n compris entre et le loyer le moins cher est pour le tarif ...
- pour n compris entre et le loyer le moins cher est pour le tarif ...
- pour n compris entre et le loyer le moins cher est pour le tarif ...
- pour n compris entre et le loyer le moins cher est pour le tarif ...
- 4. le plus important pour une durée de location est la somme des loyers versés, nous cherchons maintenant à obtenir les sommes des termes des trois suites précédentes
 - (a) recopier dans la feuille de calcul le contenu des cellules comme indiqué ci dessous

	G	H	I
10	somme de u0 à un	somme de v0 à vn	somme de w0 à wn
11			
12			

- (b) entrer dans la cellule G11 la formule suivante : =SOMME(B\$11 :B11) et tirer cette formule jusqu'à la ligne 34
- (c) de même on entre dans la cellule H11 la formule : ... (à tirer jusqu'à la ligne 34)
- (d) de même on entre dans la cellule I11 la formule : ... (à tirer jusqu'à la ligne 34)
- (e) donner alors la valeur approchée entière obtenue dans les cellule : $G34:\dots$, $H34:\dots$ et $I34:\dots$ quel est le tarif le plus avantageux pour une durée de location de 24 mois? : ...
- (f) obtenir les trois courbes correspondant aux sommes dans un même repère (au clavier : Ctrl maintenu, sélectionner à la souris la plage A11 :A34 puis la plage G11 :I34 puis graphique ...)
- (g) déduire du graphique et du tableau de valeurs le tarif le moins cher en fonction du nombre de mois n (on pourra éventuellement procéder en utilisant les fonctions Min et Si dans les colonnes J et K comme précédemment)
 - pour n compris entre et le loyer le plus avantageux est pour le tarif ...
 - pour n compris entre et le loyer le plus avantageux est pour le tarif ...
 - pour n compris entre et le loyer le plus avantageux est pour le tarif ...
- 5. quel tarif conseiller pour une durée de location de 12 mois? (justifier)
- 6. à long terme, quel tarif semble rester le plus avantageux? (on pourra sélectionner la plage A34 :K34 et tirer vers le bas ...)
- 7. que se passe t-il pour le tarif 3 si la remise n'est plus de $100 \in \text{mais de } 332,5 \in ?$:

TP: Suites Arithmétiques / Suites Géométriques / Suites Arithmético-Géométriques

- 1. sur "site.math.free.fr -> page perso -> texte", télécharger dans votre dossier personnel de Mathématiques le document : "suite ari géo (ggb)" puis l'ouvrir avec geogebra
- 2. on souhaite étudier le comportement (sens de variation et limite) des suites définies par une formule de récurrence de la forme $u_{n+1} = f(u_n)$ où f est une fonction affine f(x) = ax + b ce qui donne, $u_{n+1} = au_n + b$ où a, b et u_0 sont des paramètres réels On dit alors que la suite (u_n) est arithmético-géométrique
 - (a) ouvrir le tableur de geogebra (affichage -> tableur)
 - (b) tableau de valeurs de la suite
 - i. écrire "rang" en A1 et "valeur" en B1
 - ii. entrer la valeur "0" en A2 et la chaine de caractères "u_0" en B2 modifier la valeur de u_0 au curseur et observer l'effet sur la valeur en B2 puis remettre $u_0 = 1$
 - iii. quelle formule entrer en A3 pour obtenir les valeurs de n jusqu'à 30 quand on tire la cellule jusqu'à A32? : ...
 - iv. quelle formule entrer en B3 pour obtenir les valeurs de u_n jusqu'à u_{30} quand on tire la cellule jusqu'à B32?: ... modifier la valeur de u_0 au curseur et observer l'effet sur la colonne B puis remettre $u_0=1$
 - (c) a = 0
 - i. régler : a = 0 ; $b = 2 u_0 = 1$
 - ii. donner alors la formule de récurrence simplifiée de la suite $u_{n+1} = \dots$
 - iii. quel semble être le sens de variation de la suite? : ... change t-il quand on fait varier b? : ... change t-il quand on fait varier u_0 ? : ...
 - iv. quelle semble être la limite de la suite? : ... change t-elle quand on fait varier b? : ... change t-elle quand on fait varier u_0 ? : ...
 - (d) 0 < a < 1
 - i. régler : a = 0, 6 ; b = 2, 4 ; $u_0 = 0$
 - A. donner alors la formule de récurrence simplifiée de la suite $u_{n+1} = \dots$
 - B. quel semble être le sens de variation de la suite? : ... change t-il quand on fait varier u_0 ? (expliquer ce qui semble se passer) : ...
 - C. quelle semble être la limite de la suite? : ... change t-elle quand on fait varier u_0 ? : ...
 - D. résoudre l'équation f(x) = x soit 0, 6x + 2, 4 = x
 - E. quel résultat semble donner cette équation? : ...
 - ii. régler : a = 0, 6 ; b = -1, 2 ; $u_0 = 8$
 - A. quel semble être le sens de variation de la suite? : ...
 - B. quelle semble être la limite de la suite?:...
 - C. résoudre l'équation f(x)=x, obtient-on apparemment ainsi la valeur de la limite ? :

• • •

(e) a = 1

i. régler : a = 1 ; b = 2 ; $u_0 = 0$

ii. donner alors la formule de récurrence simplifiée de la suite $u_{n+1}=\dots$

iii. qu'obtient-on alors comme suite particulière?:...

iv. son sens de variation change t-il en fonction de b? ... (expliquer):

v. son sens de variation change t-il en fonction de u_0 ?:...

(f) a > 1

i. régler : a = 2 ; b = 0 ; $u_0 = 4$

A. donner alors la formule de récurrence simplifiée de la suite $u_{n+1} = \dots$

B. qu'obtient-on alors comme suite particulière?:...

C. conjecturer ce qui semble se passer pour le sens de variation et la limite en fonction de u_0 :

ii. régler : a = 2 ; $b \neq 0$; $u_0 = 4$

A. donner alors la formule de récurrence simplifiée de la suite $u_{n+1} = \dots$

B. conjecturer avec soins ce qui semble se passer pour le sens de variation et la limite en fonction de b:

(g) avec a = -0.8; b = 7.2; $u_0 = 20$

i. conjecturer ce qui semble se passer pour le sens de variation et la limite

ii. conjecturer ce qui semble se passer pour le sens de variation et la limite en fonction de u_0 :

(h) Ce jour un site a eu 20 milliers de visites, chaque jour 20% des visiteurs de la veille ne "reviennent pas" mais 10 milliers de nouveaux visiteurs "se connectent" conjecturer ce que devient le nombre de visiteurs quotidiens (variations et limite)

TP: Suites Arithmétiques / Suites Géométriques / Suites Arithmético-Géométriques

1. on souhaite étudier le comportement (sens de variation et limite) des suites définies par une formule de récurrence de la forme $u_{n+1} = f(u_n)$ où f est une fonction affine f(x) = ax + b ce qui donne, $u_{n+1} = au_n + b$ où a, b et u_0 sont des paramètres réels

On dit alors que la suite (u_n) est arithmético-géométrique

- Par exemple : avec a = 0, 8 et b = 4 on obtient $u_{n+1} = 0, 8u_n + 4$
- (a) sur "site.math.free.fr -> page perso -> texte", télécharger dans votre dossier personnel de Mathématiques le document : "suite ari_géo (ggb)" puis l'ouvrir avec geogebra
- (b) ouvrir le tableur de geogebra (affichage -> tableur)
- (c) tableau de valeurs de la suite
 - i. écrire "n" en A1 et "u $\,$ n" en B1
 - ii. entrer la valeur "0" en A2 et la chaine de caractères "=u_0" en B2 modifier la valeur de u_0 au curseur et observer l'effet sur la valeur en B2 puis remettre $u_0=1$
 - iii. quelle formule entrer en A3 pour obtenir les valeurs de n jusqu'à 100 quand on tire la cellule jusqu'à A102? : ...
 - iv. quelle formule entrer en B3 pour obtenir les valeurs de u_n jusqu'à u_{100} quand on tire la cellule jusqu'à B102?: ... $(rappel\ u_{n+1}=au_n+b\)$
 - v. obtenez les valeurs de n et u_n en tirant les formules vers le bas
 - vi. modifier la valeur de u_0 au curseur et observer l'effet sur la colonne B puis remettre $u_0=1$
 - vii. obtenez les points qui correspondent aux valeurs de la suite comme suit : sélectionner à la souris les valeurs numériques des deux colonnes -> clic droit -> créer -> liste de points
- (d) a = 0
 - i. régler : a = 0 ; $b = 2 u_0 = 1$
 - ii. donner alors la formule de récurrence simplifiée de la suite $u_{n+1} = ...$
 - iii. quel semble être le sens de variation de la suite? : ... change t-il quand on fait varier b? : ... change t-il quand on fait varier u_0 ? : ...
 - iv. quelle semble être la limite de la suite? : ... change t-elle quand on fait varier b? : ... change t-elle quand on fait varier u_0 ? : ...
- (e) 0 < a < 1
 - i. régler : a = 0, 6 ; b = 2, 4 ; $u_0 = 0$
 - A. donner alors la formule de récurrence simplifiée de la suite $u_{n+1} = \dots$
 - B. quel semble être le sens de variation de la suite? : ... change t-il quand on fait varier u_0 ? (expliquer ce qui semble se passer) : ...
 - C. quelle semble être la limite de la suite? : ... change t-elle quand on fait varier u_0 ? : ...
 - D. résoudre l'équation f(x) = x soit 0, 6x + 2, 4 = x

- E. quel résultat semble donner cette équation?:...
- ii. régler : a = 0, 6 ; b = -1, 2 ; $u_0 = 8$
 - A. quel semble être le sens de variation de la suite?:...
 - B. quelle semble être la limite de la suite?:...
 - C. résoudre l'équation f(x)=x, obtient-on apparemment ainsi la valeur de la limite ? : ...
- (f) a = 1
 - i. régler : a = 1 ; b = 2 ; $u_0 = 0$
 - ii. donner alors la formule de récurrence simplifiée de la suite $u_{n+1} = \dots$
 - iii. qu'obtient-on alors comme suite particulière?:...
 - iv. son sens de variation change t-il en fonction de b? ... (expliquer):
 - v. son sens de variation change t-il en fonction de u_0 ?:...
- (g) a > 1
 - i. régler : a = 2 ; b = 0 ; $u_0 = 4$
 - A. donner alors la formule de récurrence simplifiée de la suite $u_{n+1} = \dots$
 - B. qu'obtient-on alors comme suite particulière?:...
 - C. conjecturer ce qui semble se passer pour le sens de variation et la limite en fonction de u_0 :
 - ii. régler : a = 2 ; $b \neq 0$; $u_0 = 4$
 - A. donner alors la formule de récurrence simplifiée de la suite $u_{n+1} = ...$
 - B. conjecturer avec soins ce qui semble se passer pour le sens de variation et la limite en fonction de b:
- (h) avec $\begin{bmatrix} a = -0.8 & ; & b = 7.2 & ; & u_0 = 20 \end{bmatrix}$
 - i. conjecturer ce qui semble se passer pour le sens de variation et la limite
 - ii. conjecturer ce qui semble se passer pour le sens de variation et la limite en fonction de u_0 :
- (i) Ce jour un site a eu 20 milliers de visites, chaque jour 20% des visiteurs de la veille ne "reviennent pas" mais 10 milliers de nouveaux visiteurs "se connectent" conjecturer ce que devient le nombre de visiteurs quotidiens (variations et limite)

TP : Suites Numériques et Etudes de fonctions

Le but est de déterminer le prix de vente d'un repas à emporter pour maximiser le bénéfice quotidien du vendeur

- Le prix est initialement à $p_0 = 20 \in$ et il y a alors $N_0 = 0$ ventes par jour (trop cher!)
- Pour chaque baisse de prix de 1 €, il y 10 ventes en plus par jour
- Chaque repas vendu engendre un coût de 5 \in
- Le vendeur a de plus un coût fixe de 50 € par jour

n: le nombre de baisses de $1 \in CV_n:$ le coût variable correspondant $P_n:$ le prix du repas correspondant $CF_n:$ le coût fixe quotidien correspondant $CT_n:$ le coût total quotidien correspondant $R_n:$ la recette correspondant $R_n:$ le bénéfice quotidien correspondant

- 1. Préparation de la feuille de calcul automatique
 - (a) ouvrir une feuille de type tableur "LibreOffice Calc" et la sauvegarder dans "mes documents" dans le dossier "Maths" sous le nom "benefice maximal"
 - (b) recopier le tableau ci dessous

	A	В	C	D	\mathbf{E}	\mathbf{F}	G	Н
1	n	P_n	N_n	R_n	CV_n	CF_n	CT_n	B_n
2	0	20	0			50		
3								
•••								
22								

- i. Quelle formule entrer en A3 pour obtenir les nombres de baisses de prix de 0 à 20 (au pas de 1) dans la colonne A quand on tire la formule vers le bas? : ...
- ii. Quelle formule entrer en B3 pour obtenir les prix des repas correspondants dans la colonne B quand on tire la formule vers le bas parmi les formules suivantes?

- iv. Quelle formule entrer en D2 pour obtenir les recettes correspondantes dans la colonne D quand on tire la formule vers le bas? : ...
- v. Quelle formule entrer en E2 pour obtenir les coûts variables dans la colonne E quand on tire la formule vers le bas parmi les formules suivantes?

- vi. Quelle formule entrer en F3 pour obtenir les coûts fixes dans la colonne F quand on tire la formule vers le bas? : ...
- vii. Quelle formule entrer en G2 pour obtenir le coût total dans la colonne G quand on tire la formule vers le bas? : ...
- viii. Quelle formule entrer en H2 pour obtenir le bénéfice dans la colonne H quand on tire la formule vers le bas? : ...
- (c) Construire la courbe du bénéfice B_n en fonction de n en utilisant les outils graphiques
- (d) en utilisant les résultats précédents, et en changeant éventuellement des valeurs dans certaines cellules, répondez à chacune des questions suivantes
 - i. Quel est le bénéfice pour une baisse de 5 € ?:...
 - ii. Quel est le bénéfice pour une baisse de 15 € ?:...
 - iii. Quels prix de ventes donnent un bénéfice de 450 euros?:...
 - iv. Quel prix de vente exact donne un bénéfice maximal? : ... et quel est ce bénéfice? :
 - v. Quels prix de ventes (à 0,01 $\in~$ près) donnent un bénéfice nul (à 0,2 $\in~$ près) ? :

• • •

	it x la baisse de prix admet que le bénéfice est donné en fonction de x par $B(x) = -10x^2 + 150x - 50$
(a)	Calculer $B'(x)$
(b)	Etudier l'annulation de $B'(x)$
(c)	Donner le tableau de signes de $B'(x)$ pour $x \in [0; 20]$
(d)	Donner le tableau de variations complet de $B(x)$ pour $x \in [0; 20]$
(e)	Quel est le bénéfice maximum et ceci pour quelle valeur de x ?
(f)	est-ce en accord avec le résultat trouvé avec le tableur? :
3. Qu	estions diverses
(a)	Quel est le taux d'évolution du bénéfice lorsque le prix du repas passe de 19€ à 13€? (à 1%) près
(b)	Préciser la nature, le premier terme, la raison et le sens de variation des suites (Pn) , (N_n) et (CF_n)

2. Etude algébrique du bénéfice

Existe t-il:

un polygône de 1000 km de périmètre sur un confetti circulaire de 1cm de diamètre?

un polygône de $1000 \times 10 =$ 10 000 km de longueur sur un quartier d'un 10^e du confetti précédent ?

un polygône de $1000 \times 100 = 100$ 000 km de longueur sur un quartier d'un 100^e du confetti précédent? ...

Bref un polygône de périmètre aussi grand que l'on veut sur un quartier d'un aussi petit que l'on veut de notre confetti?

1. Flocon de Koch sans réduction

locon de Roen sans reduction						
P_0	P_1	P_2	P_3	P_4		
1	13	113 * 113				
$l_0=1$	$l_1 = \frac{1}{3}$	$l_2 = (\frac{1}{3})^2 = \frac{1}{9}$				
$N_0 = 3$	$N_1 = 3 \times 4 = 12$	$N_2 = 3 \times 4^2 = 48$				

On part d'un polygône P_0 égal à un triangle équilatéral de coté 1.

Le polygône P_1 s'obtient en construisant un petit triangle équilatéral sur chacun des cotés, en son centre, et de coté $\frac{1}{3}$ du coté du polygône précédent. et ainsi de suite,

On obtient une suite de polygônes : P_0 , P_1 , P_2 , ...

que deviennent les périmètres et aires des polygônes quand n est de plus en plus grand? l_n est la longueur du coté du polygône au rang n,

 N_n est le nombre de cotés du polygône au rang n

(a) Suite des périmètres :

i. compléter le tableau suivant

n	longueur coté : l_n	nombre de cotés N_n	Périmètre : p_n
0	1	3	$3 \times 1 = 3$
1	$1 \times \frac{1}{3} = \frac{1}{3}$	3×4	$3 \times 4 \times \frac{1}{3} = 3 \times \frac{4}{3}$
2	$1 \times \frac{1}{3} \times \frac{1}{3} = (\frac{1}{3})^2$	3×4^2	$3 \times 4^2 \times (\frac{1}{3})^2 = 3 \times (\frac{4}{3})^2$
3	$(\frac{1}{3})^3$	3×4^3	$3 \times 4^3 \times (\frac{1}{3})^3 = 3 \times (\frac{4}{3})^3$
4			
5			

- ii. donner l'expression de p_n en fonction de n
- iii. préciser la nature de la suite (p_n) au maximum avec toutes ses caractéristiques
- iv. quel est le sens de variation de la suite (p_n) ?
- v. avec pour unité le centimètre, calculer le périmètre du polygône P_{80} à 1km près? combien de tours de terre cela fait-il avec une terre sphérique de rayon 6400 km? est-il possible de le dessiner au crayon de bois?

- vi. déterminer n pour que le périmètre de P_n dépasse la distance terre-Soleil qui est d'environs 150 millions de km
- vii. que vaut la limite de p_n quand n tend vers $+\infty$? que cela signifie t-il concrètement?

(b) Suite des aires :

P_0	P_1	P_2	P_3	P_4
1	113	1/3 1/3		
$N_0 = 1$	$N_1 = 3$	$N_2 = 3 \times 4 = 12$	$N_3 = 3 \times 4^2 = 48$	
$a_0 = \frac{\sqrt{3}}{4}$	$a_1 = 3 \times (\frac{\sqrt{3}}{4} \times \frac{1}{9})$	$a_2 = 12 \times (\frac{\sqrt{3}}{4} \times (\frac{1}{9})^2)$		

 P_0, P_1, \dots sont les polygônes obtenus

 N_n est le nombre de petits triangles ajoutés au total au rang n ou encore le nombre de cotés du polygône précédent

 a_n est l'aire de chacun des triangles ajoutés au rang n

- i. Démontrer que la hauteur de P_0 vaut $h=\frac{\sqrt{3}}{2}$ en utilisant le Théorème de Pythagore, en déduire que l'aire A_0 de P_0 est égale à $A_0=\frac{\sqrt{3}}{4}$
- ii. Rappel : chaque petit triangle ajouté est, pour ce qui est des longueurs, une réduction d'un facteur $\frac{1}{3}$ du triangle ajouté précédent, son aire est donc égale à $(\frac{1}{3})^2 = \frac{1}{9}$ de l'aire du triangle ajouté précédent

Démontrez que l'aire A_1 de P_1 est égale à $A_1 = \frac{\sqrt{3}}{3}$

iii. compléter le tableau ci dessous

n	triangles ajoutés : N_n	aire ajoutée a_n	Aire totale A_n
0	0	0	$\frac{\sqrt{3}}{4}$
1	3	$3 \times (\frac{\sqrt{3}}{4} \times \frac{1}{9})$	$\frac{\sqrt{3}}{4} + 3 \times (\frac{\sqrt{3}}{4} \times \frac{1}{9})$
2	3×4	$3 \times 4 \times (\frac{\sqrt{3}}{4} \times (\frac{1}{9})^2)$	$\frac{\sqrt{3}}{4} + 3 \times (\frac{\sqrt{3}}{4} \times \frac{1}{9}) + 3 \times 4 \times (\frac{\sqrt{3}}{4} \times (\frac{1}{9})^2)$
3			
4			

iv. vérifier que
$$A_1 = \frac{\sqrt{3}}{4}[1 + \frac{1}{3}]$$

v. vérifier que
$$A_2 = \frac{\sqrt{3}}{4} [1 + \frac{1}{3} + \frac{1}{3} \times \frac{4}{9}]$$

vi. vérifier que
$$A_3 = \frac{\sqrt{3}}{4} [1 + \frac{1}{3} + \frac{1}{3} (\frac{4}{9} + (\frac{4}{9})^2)]$$

vii. on trouve de même pour
$$n \geq 2$$
 que $A_n = \frac{\sqrt{3}}{4}[1 + \frac{1}{3} + \frac{1}{3}(\frac{4}{9} + (\frac{4}{9})^2 + ... + (\frac{4}{9})^{n-1})]$

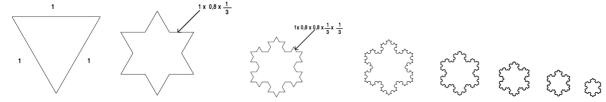
Montrer que
$$\frac{4}{9} + (\frac{4}{9})^2 + (\frac{4}{9})^3 + \dots + (\frac{4}{9})^{n-1} = \frac{4}{5}(1 - (\frac{4}{9})^{n-1})$$
 en déduire que $A_n = \frac{2\sqrt{3}}{5} - \frac{\sqrt{3}}{15} \times (\frac{4}{9})^{n-1}$

puis que
$$A_n = \frac{2\sqrt{3}}{5} - \frac{3\sqrt{3}}{20} \times (\frac{4}{9})^n$$

viii. Calculer A_{20} et A_{100} à 10^{-4} près

ix. que vaut la limite de A_n quand n tend vers $+\infty$? (valeur exacte puis à 10^{-3} près)

- (c) pour conclure, plus n est grand et plus le périmètre ... et plus l'aire ...
- 2. Flocon de Koch avec réduction



On part d'un polygône P_0' égal à un triangle équilatéral de coté 1.

Le polygône P_1' s'obtient en réduisant chacun des cotés de P_0' de 20% puis en construisant un petit triangle équilatéral sur chacun des cotés, en son centre, et de coté $\frac{1}{3}$ du coté du polygône réduit. et ainsi de suite,

On obtient une suite de polygônes : P'_0 , P'_1 , P'_2 , ...

On s'intéresse à ce que deviennent les périmètres et aires des polygônes obtenus quand n est de plus en plus grand!

On remarque que:

 P'_0 et P_0 sont identiques

 $P_1^{'}$ est P_1 réduit de 20% (pour les longueurs)

 $P_2^{'}$ est P_2 réduit deux fois de 20% (pour les longueurs)

 P_3' est P_3 réduit trois fois de 20% (pour les longueurs)

•••

(a) Suite des périmètres :

soient p_n' et p_n les périmètres respectifs de P_n' et P_n

On a

$$p'_0 = p_0$$
 $p'_1 = \frac{8}{10} \times p_1$ $p'_2 = (\frac{8}{10})^2 \times p_2$... $p'_n = (\frac{8}{10})^n \times p_n$

i. en utilisant les résultats de la partie 1. , montrer que $p_n'=3\times(\frac{16}{15})^n$

ii. que se passe t-il pour le périmètre quand n est de plus en plus grand? (justifier)

(b) Suite des aires:

soient A'_n et A_n les aires respectives de P'_n et P_n

On a

$$A'_0 = A_0$$
 $A'_1 = (\frac{64}{100}) \times A_1$ $A'_2 = (\frac{64}{100})^2 \times A_2$... $A'_n = (\frac{64}{100})^n \times A_n$

i. en utilisant les résultats de la partie 1. , montrer que $A_n'=\frac{2\sqrt{3}}{5}\times(\frac{64}{100})^n-\frac{3\sqrt{3}}{20}\times(\frac{256}{900})^n$

ii. que se passe t-il pour l'aire quand n est de plus en plus grand? (justifier)

3. conclusion

(a) qu'a de particulier la suite des polygônes (P'_n) ?

9.6 tp 6 : Comparaison de Suites Arithmétiques

Vous êtes chargé d'étudier l'évolution des nombres de patients dans deux hopitaux A et B à partir de l'année 2010. On dispose du tableau ci dessous

	A	В	С
1		Bilan Hopital A	Bilan Hopital B
2	n : nombre d'années depuis l'année 2010	Un : nombre de patients de l'année	Vn : nombre de patients de l'année
3	0	36512	60515
4	1	38012	59865
5	2	39512	59215
6	3	41012	58565
7	4	42512	57915
8	5	44012	57265

- 1. lecture et analyse du tableau
 - (a) combien de patients dans les hopitaux en 2010? : Hopital A : ... Hopital B : ...
 - (b) quel est le nombre contenu dans la cellule B5 ? : ... interprétez ce nombre : ...
 - (c) $U_0 = ...$ et $V_0 = ...$
 - (d) dans la cellule F4, entrer la formule : $\boxed{=$ B4-B3} puis tirer la formule jusqu'à F8 que remarque t-on? : ...

quelle est alors la nature de la suite (U_n) ? son premier terme? sa raison? : ...

justifier:...

(e) quelle formule entrer dans la cellule G4?:...

tirer la formule jusqu'à G8

que remarque t-on?:...

quelle est alors la nature de la suite (V_n) ? son premier terme? sa raison? : ...

justifier:...

- 2. Tableau des prévisions pour les années futures si les suites restent de même natures
 - (a) quelle formule entrer dans la cellule B9 pour obtenir automatiquement le nombre de patients? : ...

nombre de patients obtenu : ...

tirer cette formule jusqu'à la ligne 20

(b) quelle formule entrer dans la cellule C9 pour obtenir automatiquement le nombre de patients ? :...

nombre de patients obtenu : ...

tirer cette formule jusqu'à la ligne 20

- (c) obtenir les année dans la colonne A jusqu'à la ligne 20
- 3. Graphiques des prévisions pour les années futures si les suites restent de même natures
 - (a) obtenez le graphique d'évolution des nombres de patients en fonction des annéres
 - -> sélectionner la plage de cellules A2 :C20 (clic gauche maintenu de A2 à C20)
 - -> Insertion
 - -> Objet -> Diagramme -> XY (dispersion)
 - -> suivant ... (mettre un titre et une légende aux axes X et axe Y)
 - -> Terminer
 - (b) quels types de courbes obtient-on?:...

(a)	Déterminer l'année à partir de laquelle l'hopital A dépassera sa capacité maximale d'accueil de 60000 patients en justifiant :					
(b)	Déterminer l'année à partir de laquelle l'hopital B passera sous le "seuil d'alerte" de 50000 patients en justifiant :					
(c)	Déterminer l'année ou l'hopital A dépassera l'hopital B en justifiant :					
5. Et	ude des prévisions grâce à l'algèbre					
(a)	donner la formule explicite de U_n en fonction de $n:U_n=\dots$					
(b)	donner la formule explicite de V_n en fonction de n : $V_n =$					
(c)	résoudre l'équation $U_n=60000$ (d) résoudre l'équation $V_n=50000$					
	retrouve t-on le résultat du 4.(a)? retrouve t-on le résultat du 4.(b)? :					
(e)	résoudre l'équation $U_n = V_n$					
	retrouve t-on le résultat du 4.(c)? :					
	sude du total de patients					
(a)	obtenez le nombre total de patients pour chacun des hopitaux sur la période 2000-2020 Hopital A : Hopital B :					
	Expliquez comment vous avez procédé :					

 $4.\ Etude$ des prévisions grâce au tableau et (ou) au graphique

- 10 sujets de bac
- 10.1 bac 1 et 2

Bac 1:

En juin 2013 le nombre de cartes SIM en service en France est de 74,8 millions

On suppose qu'à partir de juin 2013 le nombre de cartes SIM en service en France augmente chaque semestre de $3\,\%$.

On note u_n le nombre de cartes SIM en service en France métropolitaine, exprimé en millions, à la fin du n-ième semestre après juin 2013

On définit ainsi la suite (u_n) avec $u_0 = 74,8$ et u_1 est le nombre de cartes SIM en service en France métropolitaine en décembre 2013.

- 1. Montrer que la suite (u_n) est géométrique et déterminer sa raison.
- 2. Exprimer u_{n+1} en fonction de u_n
- 3. Exprimer u_n en fonction de n
- 4. Calculer u_4 . Donner son arrondi au dixième de million et interpréter le résultat
- 5. Résoudre l'inéquation : $74.8 \times 1.03^n \ge 100$. Interpréter le résultat

Bac 2:

Cet exercice est un questionnaire à choix multiples. Pour chaque question, quatre affirmations sont proposées, une seule de ces affirmations est exacte.

Le candidat notera sur sa copie le numéro de la question suivi de la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.

Une réponse exacte rapporte un point, une réponse fausse ou l'absence de réponse n'enlève aucun point.

Les questions sont indépendantes.

- 1. La suite (u_n) est une suite arithmétique telle que : $u_1 = -10$ et $u_6 = 8$. Sa raison est égale à :
 - **A.** 3

- **B.** -3
- C. 3,6
- **D.** -3, 6.
- 2. La suite (u_n) est une suite arithmétique de raison -15 et telle que $u_1 = 1000$. Le premier entier naturel n tel que $u_n \le 250$ est :
 - **A.** 49
- **B.** 50
- C. 51
- **D.** 52.
- 3. On sait que la population d'une ville était de 235000 habitants le $1^{\rm er}$ janvier 2013 et que cette population augmente de $1,5\,\%$ par an. Le $1^{\rm er}$ janvier 2020, une estimation de la population de cette ville, arrondie à l'unité, sera de :
 - **A.** 260814
- **B.** 264726
- **C.** 625105
- **D.** 4015195.
- 4. Dans le tableau ci-dessous, extrait d'une feuille de calcul automatisé, se trouve le premier terme u_1 d'une suite géométrique (u_n) de raison 0,8. On a $u_1 = 150$.

	A	В	C	D	${f E}$	${f F}$
1	1	2	3	4	5	6
2	150					

La formule à entrer dans la cellule B2, destinée à être recopiée vers la droite jusqu'à la cellule F2 et qui permet d'afficher les termes suivants de cette suite, est :

- A. =\$ A2*0,8
- B. =A2*0.8
- C. =150*\$A1
- D. $=A2*0.8^A1$
- 5. Dans le tableau ci-dessus, quelle valeur doit-on trouver dans la cellule F2?
 - A. 39,3216
- B. 49,152
- C. 61,44
- D. 154

Bac 3:

Le tableau ci-dessous, extrait d'une feuille de tableur, donne l'évolution du nombre de mariages en France de 2007 à 2011.

	A	В	\mathbf{C}	0	${f E}$	${f F}$
1	Année	2007	2008	2009	2010	2011
2	Nombre de mariages	273669	265404	251478	251654	236826
3	Taux d'évolution par rapport à l'année précédente		-3,02%	-5,25%	0,07%	-5,89%

 $Source: INSEE, \ estimations \ de \ population-statistiques \ de \ l'état \ civil$

On précise que les cellules C3 à F3 ont au format pourcentage avec deux décimales.

1. Une formule a été saisie dans la cellule C3 puis recopiée vers la droite jusqu'à la cellule F3 pour calculer le taux d'évolution du nombre de mariages en France entre deux années consécutives de 2007 à 2011.

Parmi les formules ci-dessous, une et une seule est exacte.

- a. $\left| = (C2-B2)/C2 \right|$
- b. = C2/B2
- c. = (C2-\$B2)/\$B2 d.
- =(C2-B2)/B2
- 2. Montrer que le nombre de mariages en France a baissé d'environ $13,46\,\%$ entre 2007 et 2011.
- 3. On considère qu'à partir de 2011, le nombre de mariages continue à baisser chaque année de 3,55 %. Pour tout entier n positif ou nul, on note u_n le nombre de mariages en France pour l'année (2011+n). Ainsi $u_0 = 236826$.
 - (a) À l'aide de ce modèle, estimer le nombre de mariages en France en 2012.
 - (b) Justifier pour tout entier n l'égalité : $u_{n+1} = 0,9645 \times u_n$
 - (c) En déduire la nature de la suite (u_n) et préciser sa raison.
 - (d) Pour tout entier n, exprimer u_n en fonction de n.

Dans cette question, toute trace de recherche, même incomplète ou d'initiative même infructueuse, sera prise en compte dans l'évaluation.

(a) Selon ce modèle, à partir de quelle année le nombre de mariages en France deviendraitil inférieur à 200000?

Bac 4:

Durant l'année 2013, un particulier faisait 8 heures de sport chaque mois. À partir de janvier 2014, il décide d'augmenter de $10\,\%$ chaque mois son temps de pratique sportive mensuel.

- (a) Calculer son nouveau temps de pratique sportive pour le mois de janvier 2014, exprimé en heures et en minutes.
- (b) On désigne par l'entier naturel n le rang du mois et par u_n le temps de pratique sportive, en heures, du mois de rang n.

Ainsi u_0 est égal à 8 et u_1 désigne le temps de pratique sportive pour le mois de janvier 2014.

Expliquer pourquoi $u_n = 8 \times 1, 1^n$.

- (c) Quel sera le temps de pratique sportive mensuel du particulier en décembre 2014? On arrondira le résultat à l'heure.
- (d) Après consultation de son médecin, il lui est conseillé de ne pas dépasser 16 heures mensuelles de pratique sportive. À partir de quel mois, dépassera-t-il cette limite? Détailler la méthode utilisée.

11 Activités interdisciplinaires

11.0.1 travail 1: (prévisions avec courbes de tendance)

Nom, Prénom, Classe:

AI Maths: Travail 1 (prévisions avec courbe de tendance)

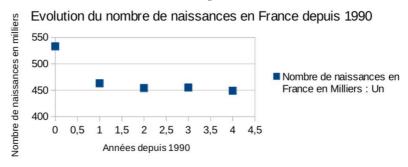
But:

Dans le cadre de vos activités interdisciplinaires, le travail suivant consiste à :

- 1. Trouver des données numériques chronologiques (jusqu'à 2016 si possible) concernant votre sujet.
 - Par exemple, on trouve des données concernant le nombre de naissances en France sur le site de l'I.N.S.E.E.
- 2. Regrouper ces données dans un tableau (dans un tableur) (une colonne pour le nombre d'années depuis ... et une autre pour vos valeurs)

	exemple:					
	A	В				
1	Nombre d'années depuis 1990 : <u>n</u>	Nombre de naissances en France en Milliers : Un				
2	0	533				
3	1	463				
4	2	454				
5	3	455				
6	4	449				

3. Obtenir un graphique légendé en rapport avec les données numériques précédentes

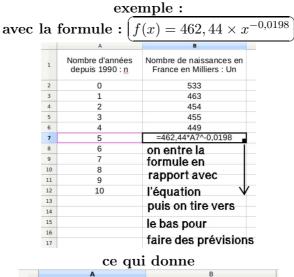


- 4. Obtenir une courbe de tendance bien adaptée avec ce graphique (donnée par le tableur)
- 5. Trouver l'équation de cette courbe de tendance (donnée par le tableur)

exemple: Evolution du nombre de naissances en France depuis Nombre de naissances en milliers equation de $f(x) = 462.4448443508 x^{-0.0198123198}$ 550 Nombre de naissances en 500 France en Milliers: Un Puissance (Nombre de 450 naissances en France en Milliers: Un) 400 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 Courbe de Années depuis 1990 tendance

- -> Clic gauche sur un point du graphique
- -> Clic droit : insérer une courbe de tendance
- -> Choisir un type de courbe (linéaire, puissance, exponentiel, ...)
- -> Afficher l'équation de la courbe
- -> Valider

6. Utiliser la formule précédente pour compléter le tableau de valeurs pour le futur (faire une prévision pour 2017? ...)



ce qui donne					
	Α	В			
1	Nombre d'années depuis 1990 : <u>n</u>	Nombre de naissances en France en Milliers : Un			
2	0	533			
3	1	463			
4	2	454			
5	3	455			
6	4	449			
7	5	447,9358132438			
8	6	446,321695028			
9					
28	26	433,5497301287			
29	27	433,2258774262			
30	En 2017, anvir	ons 433,22 milliers			
31	LITZUT/ ETIVIT	0115 433,22 IIIIIIIE15			

7. Utiliser la formule, le tableau de valeur ou la formule trouvée pour déterminer en quelle année un certain seuil serait atteint. (en quelle année va t-on dépasser la valeur ...?)

	exen	nple:
	Α	В
1	Nombre d'années depuis 1990 : <u>n</u>	Nombre de naissances en France en Milliers : Un
2	0	533
3	1	463
4	2	454
9		
41	39	430,0830365127
42	40	429,8674930996
43	On passe en	dessous des
44	430 000 naiss	
45	TOU VVV Halot	Julico Cii
46	2030!?	

Remarques : les calculs ci dessus sont valables seulement si la courbe de tendance est bien adaptée

- 8. Ceci en rédigeant dans un document numérique :
 - (a) l'origine de vos données numériques (quel site? document? ...)
 - (b) la démarche suivie (tableau, courbe, courbe de tendance, équation...)
 - (c) les explications et commentaires (tableaux et graphiques inclus)
 - (d) une remarque concernant les hypothèses et prévisions que vous avez faites
 - (e) le tout à sauvegarder dans votre dossier d'AI